Danuta Kaczmarek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2400715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of Cu–Ti thin film surface properties on antimicrobial activity and viability of living cells. Materials Science and Engineering C, 2015, 56, 48-56.	3.8	52
2	Comparison of the Physicochemical Properties of TiO2 Thin Films Obtained by Magnetron Sputtering with Continuous and Pulsed Gas Flow. Coatings, 2018, 8, 412.	1.2	52
3	Correlation of Photocatalysis and Photoluminescence Effect in Relation to the Surface Properties of TiO ₂ :Tb Thin Films. International Journal of Photoenergy, 2013, 2013, 1-9.	1.4	44
4	Characterization of HfO2 Optical Coatings Deposited by MF Magnetron Sputtering. Coatings, 2019, 9, 106.	1.2	44
5	Hardness of Nanocrystalline TiO ₂ Thin Films. Journal of Nano Research, 0, 18-19, 195-200.	0.8	41
6	Influence of annealing on the structure and stoichiometry of europium-doped titanium dioxide thin films. Vacuum, 2008, 82, 1007-1012.	1.6	36
7	Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process. Materials Science-Poland, 2015, 33, 660-668.	0.4	29
8	Analysis of amorphous tungsten oxide thin films deposited by magnetron sputtering for application in transparent electronics. Applied Surface Science, 2021, 570, 151151.	3.1	29
9	Transparent oxide semiconductors based on TiO2 doped with V, Co and Pd elements. Journal of Non-Crystalline Solids, 2006, 352, 2324-2327.	1.5	26
10	Influence of Nd-Doping on Photocatalytic Properties of TiO ₂ Nanoparticles and Thin Film Coatings. International Journal of Photoenergy, 2014, 2014, 1-10.	1.4	22
11	Effect of Nd doping on structure and improvement of the properties of TiO2 thin films. Surface and Coatings Technology, 2015, 270, 57-65.	2.2	21
12	Modification of various properties of HfO2 thin films obtained by changing magnetron sputtering conditions. Surface and Coatings Technology, 2017, 320, 426-431.	2.2	19
13	Investigation of microstructure, micro-mechanical and optical properties of HfTiO 4 thin films prepared by magnetron co-sputtering. Materials Research Bulletin, 2015, 72, 116-122.	2.7	17
14	Thermal oxidation impact on the optoelectronic and hydrogen sensing properties of p-type copper oxide thin films. Materials Research Bulletin, 2022, 147, 111646.	2.7	16
15	Investigations of elemental composition and structure evolution in (Ti,Cu)-oxide gradient thin films prepared using (multi)magnetron co-sputtering. Surface and Coatings Technology, 2018, 334, 150-157.	2.2	15
16	Influence of thickness on transparency and sheet resistance of ITO thin films. , 2010, , .		14
17	Influence of Nd dopant amount on microstructure and photoluminescence of TiO2:Nd thin films. Optical Materials, 2015, 48, 172-178.	1.7	14
18	Investigation of structural, optical and micro-mechanical properties of (NdyTi1â^'y)Ox thin films deposited by magnetron sputtering. Materials and Design, 2015, 85, 377-388.	3.3	13

DANUTA KACZMAREK

#	Article	IF	CITATIONS
19	Influence of doping with Co, Cu, Ce and Fe on structure and photocatalytic activity of TiO ₂ nanoparticles. Materials Science-Poland, 2017, 35, 725-732.	0.4	13
20	P-type transparent Ti–V oxides semiconductor thin film as a prospective material for transparent electronics. Thin Solid Films, 2012, 520, 3472-3476.	0.8	12
21	The method of increasing COMPO contrast by linearization of backscattering characteristic η =f(Z). Scanning, 1997, 19, 310-315.	0.7	10
22	Effect of the nanocrystalline structure type on the optical properties of TiO2:Nd (1at.%) thin films. Optical Materials, 2015, 42, 423-429.	1.7	10
23	Influence of plasma treatment on wettability and scratch resistance of Ag-coated polymer substrates. Materials Science-Poland, 2016, 34, 418-426.	0.4	10
24	TiO2 thin films doped with Pd and Eu for optically and electrically active TOS–Si heterojunction. Optical Materials, 2009, 31, 1337-1339.	1.7	9
25	Photocatalytic properties of transparent TiO2 coatings doped with neodymium. Polish Journal of Chemical Technology, 2012, 14, 1-7.	0.3	9
26	Surface and mechanical characterization of ITO coatings prepared by microwaveâ€assisted magnetron sputtering process. Surface and Interface Analysis, 2014, 46, 827-831.	0.8	9
27	Influence of Material Composition on Structural and Optical Properties of HfO2-TiO2 Mixed Oxide Coatings. Coatings, 2016, 6, 13.	1.2	9
28	Investigation of surface topography using a multidetector system in a SEM. Vacuum, 2001, 62, 303-308.	1.6	8
29	Structural and optical properties of terbium in TiO2 matrix. Optical Materials, 2009, 31, 1349-1352.	1.7	8
30	Investigations of reversible optical transmission in gasochromic (Ti–V–Ta)Ox thin film for gas sensing applications. Sensors and Actuators B: Chemical, 2014, 201, 420-425.	4.0	8
31	Comparison of structural, mechanical and corrosion properties of TiO 2 -WO 3 mixed oxide films deposited on TiAlV surface by electron beam evaporation. Applied Surface Science, 2017, 421, 185-190.	3.1	8
32	Investigations of structure and electrical properties of TiO2/CuO thin film heterostructures. Thin Solid Films, 2019, 690, 137538.	0.8	8
33	Structural and surface properties of TiO2 thin films doped with neodymium deposited by reactive magnetron sputtering. Materials Science-Poland, 2013, 31, 71-79.	0.4	7
34	Investigation of structural, optical and electrical properties of (Ti,Nb)Ox thin films deposited by high energy reactive magnetron sputtering. Materials Science-Poland, 2014, 32, 457-464.	0.4	7
35	Investigations of electrical and optical properties of functional TCO thin films. Materials Science-Poland, 2015, 33, 363-368.	0.4	7
36	Influence of nanocrystalline structure and surface properties of TiO ₂ thin films on the viability of L929 cells. Polish Journal of Chemical Technology, 2015, 17, 33-39.	0.3	7

DANUTA KACZMAREK

#	Article	IF	CITATIONS
37	Influence of europium on structure modification of TiO2 thin films prepared by high energy magnetron sputtering process. Surface and Coatings Technology, 2017, 320, 132-137.	2.2	7
38	Memristive properties of transparent oxide semiconducting (Ti,Cu)O <i>_x</i> -gradient thin film. Semiconductor Science and Technology, 2018, 33, 015002.	1.0	7
39	Influence of Material Composition on Structure, Surface Properties and Biological Activity of Nanocrystalline Coatings Based on Cu and Ti. Coatings, 2020, 10, 343.	1.2	7
40	Effect of the structure on biological and photocatalytic activity of transparent titania thin-film coatings. Materials Science-Poland, 2016, 34, 856-862.	0.4	6
41	An impact of the copper additive on photocatalytic and bactericidal properties of TiO ₂ thin films. Materials Science-Poland, 2017, 35, 421-426.	0.4	6
42	The effect of post-process annealing on optical and electrical properties of mixed HfO2–TiO2 thin film coatings. Journal of Materials Science: Materials in Electronics, 2019, 30, 6358-6369.	1.1	6
43	Optical and electrical properties of nanocrystalline TiO2:Pd semiconducting oxides. Open Physics, 2011, 9, 313-318.	0.8	5
44	Influence of the structural and surface properties on photocatalytic activity of TiO ₂ :Nd thin films. Polish Journal of Chemical Technology, 2015, 17, 103-111.	0.3	5
45	Comparison of structural, mechanical and corrosion properties of (Ti0.68W0.32)Ox and (Ti0.41W0.59)Ox thin films, deposited on TiAlV surface by electron beam evaporation. Surface and Coatings Technology, 2016, 307, 596-602.	2.2	5
46	Photocatalytic Coatings Based on TiOx for Application on Flexible Glass for Photovoltaic Panels. Journal of Materials Engineering and Performance, 2022, 31, 6998-7008.	1.2	5
47	The method for the reconstruction of complex images of specimens using backscattered electrons. Scanning, 2002, 24, 65-69.	0.7	4
48	Thermophysical properties of refractory W-50.4%Re and Mo-39.5%Re thin alloy layers deposited on silicon and silica substrates. International Journal of Refractory Metals and Hard Materials, 2020, 87, 105147.	1.7	4
49	Characterization of TiO2 and TiO2-HfO2 Transparent Thin Films for Microelectronics Applications. , 2006, , .		3
50	Photocatalytic properties of nanocrystalline TiO2 thin films doped with Tb. Open Physics, 2011, 9, 354-359.	0.8	3
51	Photoluminescence and Photocatalytic Properties of Nanocrystalline TiO ₂ :Tb Thin Films. Journal of Nano Research, 2012, 18-19, 187-193.	0.8	3
52	Structural properties of transparent Ti-V oxide semiconductor thin films. Open Physics, 2013, 11, .	0.8	3
53	Investigation of electrical performance of silicon solar cells with transparent counter electrode. Microelectronics International, 2015, 32, 149-151.	0.4	3
54	Influence of ITO layer application on electrical parameters of silicon solar cells with screen printed front electrode. Microelectronics International, 2016, 33, 172-175.	0.4	3

DANUTA KACZMAREK

#	Article	IF	CITATIONS
55	Influence of post-process annealing temperature on structural, optical, mechanical and corrosion properties of mixed TiO2WO3 thin films. Thin Solid Films, 2020, 698, 137856.	0.8	3
56	Influence of magnetron powering mode on various properties of TiO ₂ thin films. Materials Science-Poland, 2018, 36, 748-760.	0.4	3
57	Sheet resistance and optical properties of ITO thin films deposited by magnetron sputtering with different O. , 2010, , .		2
58	Analysis of substrate type and thickness influence on wettability of Nb2O5 thin films. , 2011, , .		2
59	Multifunctional Nanocrystalline Cu–Ti Thin Films Enhance Survival and Induce Proliferation of Mouse Fibroblasts In Vitro. Coatings, 2021, 11, 300.	1.2	2
60	Investigation of a memory effect in a Au/(Ti–Cu)Ox-gradient thin film/TiAlV structure. Beilstein Journal of Nanotechnology, 2022, 13, 265-273.	1.5	2
61	Methods of topography mode realization in scanning electron microscope. , 1996, 2780, 125.		1
62	Detectors of optical and nuclear radiation examined by the light-beam-induced current (LBIC) method. , 2003, , .		1
63	Influence of Tb-dopant on water adsorption and wettability of TiO <inf>2</inf> thin films. , 2009, , .		1
64	Investigation of gasochromic effects in TiO <inf>2</inf> thin films doped with W, Cr, Mo. , 2009, , .		1
65	Electrical investigation of transparent thin films based on TiO <inf>2</inf> doped with palladium and vanadium. , 2009, , .		1
66	Hardness of nanocrystalline TiO. , 2010, , .		1
67	Influence of droplet size and surface preparation of TiO. , 2010, , .		1
68	Humidity influence on antistatic properties of optical coatings. , 2010, , .		1
69	Influence of nanocrystalline structure and composition on hardness of thin films based on TiO2. Open Physics, 2011, 9, 349-353.	0.8	1
70	Characterization and properties of multicomponent oxide thin films with gasochromic effect. , 2013, , \cdot		1
71	Structural properties of transparent Tb-doped TiO <inf>2</inf> thin films. , 2007, , .		0
72	Investigation of electrical and optical properties of TiO <inf>2</inf> :Pd, TiO <inf>2</inf> :(Eu,Pd) and TiO <inf>2</inf> :(Tb,Pd) thin films. , 2008, , .		0

#	Article	IF	CITATIONS
73	Influence of Eu, Tb, Pd dopants on electrical and optical properties of nanostructured TiO <inf>2</inf> thin films. , 2008, , .		0
74	Structural, electrical and surface static charge investigation of TiO <inf>2</inf> thin films doped with different amount of vanadium. , 2009, , .		0
75	Designing of antireflection coatings for optical lenses and solar cells. , 2010, , .		0
76	Optical and structural properties of V. , 2010, , .		0
77	Investigation of antistatic properties of spectacle lenses with antireflective coatings. , 2010, , .		0
78	Application of spectrophotometry and ellipsometry for determination of optical parameters of optical coating thin films. , 2010, , .		0
79	Synthesis and photocatalytic activity of undoped and doped TiO2 nanopowders. , 2011, , .		0
80	Self-cleaning properties of nanocrystalline TiO2 thin films doped with terbium. , 2011, , .		0
81	Characterization of titanium-vanadium oxides deposited on silicon substrates using in photovoltaic applications. , 2011, , .		0
82	Influence of terbium on structure and luminescence of nanocrystalline TiO2 thin films. Open Physics, 2013, 11, .	0.8	0