
Daniel Goldman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2400712/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Notch signaling via Hey1 and Id2b regulates Müller glia's regenerative response to retinal injury. Glia, 2021, 69, 2882-2898.	4.9	29
2	Enrichment Preferences of Singly Housed Zebrafish (<i>Danio rerio</i>). Journal of the American Association for Laboratory Animal Science, 2020, 59, 148-155.	1.2	8
3	Tgfb3 collaborates with PP2A and notch signaling pathways to inhibit retina regeneration. ELife, 2020, 9, .	6.0	30
4	mTORC1 underlies ageâ€related muscle fiber damage and loss by inducing oxidative stress and catabolism. Aging Cell, 2019, 18, e12943.	6.7	104
5	Rapamycin protects aging muscle. Aging, 2019, 11, 5868-5870.	3.1	15
6	Notch Suppression Collaborates with Ascl1 and Lin28 to Unleash a Regenerative Response in Fish Retina, But Not in Mice. Journal of Neuroscience, 2018, 38, 2246-2261.	3.6	86
7	Granulin 1 Promotes Retinal Regeneration in Zebrafish. , 2018, 59, 6057.		12
8	Opposing Actions of Fgf8a on Notch Signaling Distinguish Two Muller Glial Cell Populations that Contribute to Retina Growth and Regeneration. Cell Reports, 2017, 19, 849-862.	6.4	47
9	The Regulation of Notch Signaling in Retinal Development and Regeneration. Current Pathobiology Reports, 2017, 5, 323-331.	3.4	31
10	Antiviral Drug Ganciclovir Is a Potent Inhibitor of the Proliferation of Müller Glia–Derived Progenitors During Zebrafish Retinal Regeneration. , 2016, 57, 1991.		9
11	Zebrafish Müller glia-derived progenitors are multipotent, exhibit proliferative biases and regenerate excess neurons. Scientific Reports, 2016, 6, 24851.	3.3	114
12	Retina regeneration in zebrafish. Current Opinion in Genetics and Development, 2016, 40, 41-47.	3.3	212
13	Dach2-Hdac9 signaling regulates reinnervation of muscle endplates. Development (Cambridge), 2015, 142, 4038-48.	2.5	30
14	Retinal Injury, Growth Factors, and Cytokines Converge on β-Catenin and pStat3 Signaling to Stimulate Retina Regeneration. Cell Reports, 2014, 9, 285-297.	6.4	129
15	Leptin and IL-6 Family Cytokines Synergize to Stimulate Müller Glia Reprogramming and Retina Regeneration. Cell Reports, 2014, 9, 272-284.	6.4	139
16	mTORC1 Promotes Denervation-Induced Muscle Atrophy Through a Mechanism Involving the Activation of FoxO and E3 Ubiquitin Ligases. Science Signaling, 2014, 7, ra18.	3.6	98
17	Zinc-binding Domain-dependent, Deaminase-independent Actions of Apolipoprotein B mRNA-editing Enzyme, Catalytic Polypeptide 2 (Apobec2), Mediate Its Effect on Zebrafish Retina Regeneration. Journal of Biological Chemistry, 2014, 289, 28924-28941.	3.4	20
18	A New Transgenic Line Reporting pStat3 Signaling in Glia. Zebrafish, 2014, 11, 588-589.	1.1	2

DANIEL GOLDMAN

#	Article	IF	CITATIONS
19	Regeneration, morphogenesis and self-organization. Development (Cambridge), 2014, 141, 2745-2749.	2.5	12
20	Excitotoxic brain injury in adult zebrafish stimulates neurogenesis and longâ€distance neuronal integration. Glia, 2014, 62, 2061-2079.	4.9	60
21	MÃ1⁄4ller glial cell reprogramming and retina regeneration. Nature Reviews Neuroscience, 2014, 15, 431-442.	10.2	498
22	Analysis of DNA methylation reveals a partial reprogramming of the Muller glia genome during retina regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19814-19819.	7.1	105
23	Insm1a-mediated gene repression is essential for the formation and differentiation of Müller glia-derived progenitors in the injured retina. Nature Cell Biology, 2012, 14, 1013-1023.	10.3	107
24	Application of Cre-loxP Recombination for Lineage Tracing of Adult Zebrafish Retinal Stem Cells. Methods in Molecular Biology, 2012, 884, 129-140.	0.9	8
25	Injury-Dependent MÃ1⁄4ller Glia and Ganglion Cell Reprogramming during Tissue Regeneration Requires Apobec2a and Apobec2b. Journal of Neuroscience, 2012, 32, 1096-1109.	3.6	70
26	HB-ECF Is Necessary and Sufficient for Müller Glia Dedifferentiation and Retina Regeneration. Developmental Cell, 2012, 22, 334-347.	7.0	232
27	Ascl1a/Dkk/l̂²-catenin signaling pathway is necessary and glycogen synthase kinase-3l̂² inhibition is sufficient for zebrafish retina regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15858-15863.	7.1	194
28	Myogenin regulates denervation-dependent muscle atrophy in mouse soleus muscle. Journal of Cellular Biochemistry, 2011, 112, 2149-2159.	2.6	83
29	Conditional gene expression and lineage tracing of <i>tuba1a</i> expressing cells during zebrafish development and retina regeneration. Journal of Comparative Neurology, 2010, 518, 4196-4212.	1.6	83
30	Ascl1a regulates Müller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nature Cell Biology, 2010, 12, 1101-1107.	10.3	332
31	Tuba1a gene expression is regulated by KLF6/7 and is necessary for CNS development and regeneration in zebrafish. Molecular and Cellular Neurosciences, 2010, 43, 370-383.	2.2	58
32	A Histone Deacetylase 4/Myogenin Positive Feedback Loop Coordinates Denervation-dependent Gene Induction and Suppression. Molecular Biology of the Cell, 2009, 20, 1120-1131.	2.1	114
33	Highly-restricted, cell-specific expression of the simian CMV-IE promoter in transgenic zebrafish with age and after heat shock. Gene Expression Patterns, 2009, 9, 54-64.	0.8	6
34	The Proneural Basic Helix-Loop-Helix Gene <i>Ascl1a</i> Is Required for Retina Regeneration. Journal of Neuroscience, 2008, 28, 1109-1117.	3.6	231
35	<i>pak2a</i> mutations cause cerebral hemorrhage in <i>redhead</i> zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13996-14001.	7.1	89
36	Gene expression analysis of zebrafish retinal ganglion cells during optic nerve regeneration identifies KLF6a and KLF7a as important regulators of axon regeneration. Developmental Biology, 2007, 312, 596-612.	2.0	157

DANIEL GOLDMAN

#	Article	IF	CITATIONS
37	Myogenin-dependent nAChR clustering in aneural myotubes. Molecular and Cellular Neurosciences, 2006, 31, 649-660.	2.2	13
38	A reporter-assisted mutagenesis screen using α1-tubulin-GFP transgenic zebrafish uncovers missteps during neuronal development and axonogenesis. Developmental Biology, 2006, 296, 29-47.	2.0	39
39	Characterization of a Muscle-specific Enhancer in Human MuSK Promoter Reveals the Essential Role of Myogenin in Controlling Activity-dependent Gene Regulation. Journal of Biological Chemistry, 2006, 281, 3943-3953.	3.4	21
40	A Role for Â1 Tubulin-Expressing Muller Glia in Regeneration of the Injured Zebrafish Retina. Journal of Neuroscience, 2006, 26, 6303-6313.	3.6	397
41	Activity-dependent gene regulation in skeletal muscle is mediated by a histone deacetylase (HDAC)-Dach2-myogenin signal transduction cascade. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16977-16982.	7.1	69
42	An Element in the Â1-Tubulin Promoter Is Necessary for Retinal Expression during Optic Nerve Regeneration But Not after Eye Injury in the Adult Zebrafish. Journal of Neuroscience, 2004, 24, 7663-7673.	3.6	66
43	CaM kinase II-dependent phosphorylation of myogenin contributes to activity-dependent suppression of nAChR gene expression in developing rat myotubes. Cellular Signalling, 2004, 16, 551-563.	3.6	37
44	CaM Kinase II-dependent Suppression of Nicotinic Acetylcholine Receptor δ-Subunit Promoter Activity. Journal of Biological Chemistry, 2001, 276, 26057-26065.	3.4	22
45	Different regulatory elements are necessary for αl tubulin induction during CNS development and regeneration. NeuroReport, 2000, 11, 3859-3863.	1.2	22
46	Regulation of myogenin protein expression in denervated muscles from young and old rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R179-R188.	1.8	44
47	Role for calcium from the sarcoplasmic reticulum in coupling muscle activity to nicotinic acetylcholine receptor gene expression in rat. Journal of Neurobiology, 1998, 35, 245-257.	3.6	20
48	Induction of ?1-tubulin gene expression during development and regeneration of the fish central nervous system. , 1998, 37, 429-440.		64
49	Cloning and characterization of GETS-1, a goldfish Ets family member that functions as a transcriptional repressor in muscle. Biochemical Journal, 1998, 335, 267-275.	3.7	16
50	A dual function activity-dependent, muscle-specific enhancer from rat nicotinic acetylcholine receptor ?-subunit gene. , 1996, 31, 359-369.		4
51	Electrical Activity Suppresses Nicotinic Acetylcholine Receptor Î ³ Subunit Promoter Activity. Developmental Biology, 1995, 168, 416-428.	2.0	21
52	Target-Dependent Regulation of Retinal Nicotinic Acetylcholine Receptor and Tubulin RNAs During Optic Nerve Regeneration in Goldfish. Journal of Neurochemistry, 1992, 58, 1009-1015.	3.9	32
53	Induction of adult-type nicotinic acetylcholine receptor gene expression in noninnervated regenerating muscle. Neuron, 1991, 7, 649-658.	8.1	63
54	Spatial and temporal expression of acetylcholine receptor RNAs in innervated and denervated rat soleus muscle. Neuron, 1989, 3, 219-228.	8.1	127

#	Article	IF	CITATIONS
55	Acetylcholine receptor α-, β-, γ-, and δ-subunit mRNA levels are regulated by muscle activity. Neuron, 1988, 1, 329-333.	8.1	222