Martin J Paterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2400640/publications.pdf

Version: 2024-02-01

118 4,062 36 59
papers citations h-index g-index

120 120 120 4941 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Targeted photoredox catalysis in cancer cells. Nature Chemistry, 2019, 11, 1041-1048.	6.6	293
2	Two-Photon Absorption in Tetraphenylporphycenes:Â Are Porphycenes Better Candidates than Porphyrins for Providing Optimal Optical Properties for Two-Photon Photodynamic Therapy?. Journal of the American Chemical Society, 2007, 129, 5188-5199.	6.6	189
3	A Conformationally Flexible, Urea-Based Tripodal Anion Receptor:Â Solid-State, Solution, and Theoretical Studies. Journal of Organic Chemistry, 2006, 71, 1598-1608.	1.7	155
4	Benchmarking two-photon absorption with CC3 quadratic response theory, and comparison with density-functional response theory. Journal of Chemical Physics, 2006, 124, 054322.	1.2	137
5	Theoretical Study of Benzotriazole UV Photostability:Â Ultrafast Deactivation through Coupled Proton and Electron Transfer Triggered by a Charge-Transfer State. Journal of the American Chemical Society, 2004, 126, 2912-2922.	6.6	132
6	Metformin selectively targets redox control of complex I energy transduction. Redox Biology, 2018, 14, 187-197.	3.9	115
7	Mechanism of an Exceptional Class of Photostabilizers:Â A Seam of Conical Intersection Parallel to Excited State Intramolecular Proton Transfer (ESIPT) ino-Hydroxyphenyl-(1,3,5)-triazine. Journal of Physical Chemistry A, 2005, 109, 7527-7537.	1.1	111
8	Structure Calculation of an Elastic Hydrogel from Sonication of Rigid Small Molecule Components. Angewandte Chemie - International Edition, 2008, 47, 1058-1062.	7.2	107
9	Overview of Theoretical and Computational Methods Applied to the Oxygen–Organic Molecule Photosystem. Photochemistry and Photobiology, 2006, 82, 1136.	1.3	104
10	Organoiridium Photosensitizers Induce Specific Oxidative Attack on Proteins within Cancer Cells. Angewandte Chemie - International Edition, 2017, 56, 14898-14902.	7.2	101
11	Time-resolved photoelectron imaging of excited state relaxation dynamics in phenol, catechol, resorcinol, and hydroquinone. Journal of Chemical Physics, 2012, 137, 184304.	1.2	96
12	Unraveling Ultrafast Dynamics in Photoexcited Aniline. Journal of the American Chemical Society, 2012, 134, 12578-12589.	6.6	80
13	Magnetism in metal–organic capsules. Chemical Communications, 2010, 46, 3484.	2.2	73
14	Non-Adiabatic Direct Dynamics Study of Chromium Hexacarbonyl Photodissociation. Journal of Physical Chemistry A, 2002, 106, 10494-10504.	1.1	70
15	Induced Fit Interanion Discrimination by Binding-Induced Excimer Formation. Journal of the American Chemical Society, 2008, 130, 4105-4113.	6.6	70
16	Polymer-Supported Photosensitizers for Oxidative Organic Transformations in Flow and under Visible Light Irradiation. ACS Catalysis, 2017, 7, 4602-4612.	5. 5	70
17	Conical intersections: A perspective on the computation of spectroscopic Jahn–Teller parameters and the degenerate †intersection space'. Physical Chemistry Chemical Physics, 2005, 7, 2100.	1.3	67
18	Exploring quantum phenomena and vibrational control in $\ddot{l}f^*$ mediated photochemistry. Chemical Science, 2013, 4, 993-1001.	3.7	67

#	Article	IF	CITATIONS
19	Ultrafast photo-induced ligand solvolysis of cis-[Ru(bipyridine) ₂] ²⁺ : experimental and theoretical insight into its photoactivation mechanism. Physical Chemistry Chemical Physics, 2014, 16, 19141-19155.	1.3	65
20	One- and Two-Photon Photosensitized Singlet Oxygen Production:Â Characterization of Aromatic Ketones as Sensitizer Standards. Journal of Physical Chemistry A, 2007, 111, 5756-5767.	1.1	61
21	A global picture of the S1/S0 conical intersection seam of benzene. Chemical Physics, 2010, 377, 60-65.	0.9	61
22	Fluorescent †Twistâ€on' Sensing by Inducedâ€Fit Anion Stabilisation of a Planar Chromophore. Chemistry - A European Journal, 2010, 16, 2714-2718.	1.7	58
23	The curvature of the conical intersection seam: An approximate second-order analysis. Journal of Chemical Physics, 2004, 121, 11562-11571.	1.2	57
24	Following the excited state relaxation dynamics of indole and 5-hydroxyindole using time-resolved photoelectron spectroscopy. Journal of Chemical Physics, 2011, 135, 194307.	1.2	57
25	Wavepacket dynamics study of Cr(CO)5 after formation by photodissociation: relaxation through an (E ⊕ A) ⊗ e Jahn–Teller conical intersection. Molecular Physics, 2006, 104, 1095-1105.	0.8	52
26	Linear response functions for a vibrational configuration interaction state. Journal of Chemical Physics, 2006, 125, 214309.	1.2	51
27	Manipulating dynamics with chemical structure: probing vibrationally-enhanced tunnelling in photoexcited catechol. Physical Chemistry Chemical Physics, 2013, 15, 6879.	1.3	48
28	Biomolecular Mode of Action of Metformin in Relation to Its Copper Binding Properties. Biochemistry, 2014, 53, 787-795.	1.2	46
29	Gelation Landscape Engineering Using a Multi-Reaction Supramolecular Hydrogelator System. Journal of the American Chemical Society, 2015, 137, 14236-14239.	6.6	46
30	Anion Binding and Luminescent Sensing using Cationic Ruthenium(II) Aminopyridine Complexes. Chemistry - A European Journal, 2008, 14, 7296-7305.	1.7	43
31	Effects of conjugation length and resonance enhancement on two-photon absorption in phenylene–vinylene oligomers. Physical Chemistry Chemical Physics, 2008, 10, 1177-1191.	1.3	43
32	Twoâ€Photonâ€Activated Ligand Exchange in Platinum(II) Complexes. Angewandte Chemie - International Edition, 2012, 51, 11263-11266.	7.2	42
33	Ultraviolet relaxation dynamics of aniline, $\langle i \rangle N \langle i \rangle$, $\langle i \rangle N \langle i \rangle$ -dimethylaniline and 3,5-dimethylaniline at 250 nm. Journal of Chemical Physics, 2015, 142, 114309.	1.2	42
34	Optical Excitations in Star-Shaped Fluorene Molecules. Journal of Physical Chemistry A, 2011, 115, 2913-2919.	1.1	40
35	A quinolinium-derived turn-off fluorescent anion sensor. Organic and Biomolecular Chemistry, 2010, 8, 1010.	1.5	39
36	Conformational control by â€~zipping-up' an anion-binding unimolecular capsule. Chemical Communications, 2008, , 1395.	2.2	36

#	Article	IF	CITATIONS
37	Two-photon absorption cross sections: An investigation of solvent effects. Theoretical studies on formaldehyde and water. Journal of Chemical Physics, 2006, 125, 184501.	1.2	35
38	Intramolecular binding site competition as a means of tuning the response of a colourimetric anion sensor. New Journal of Chemistry, 2008, 32, 786.	1.4	35
39	Time resolved velocity map imaging of H-atom elimination from photoexcited imidazole and its methyl substituted derivatives. Physical Chemistry Chemical Physics, 2011, 13, 10342.	1.3	35
40	General Force-Field Parametrization Scheme for Molecular Dynamics Simulations of Conjugated Materials in Solution. Journal of Chemical Theory and Computation, 2016, 12, 3813-3824.	2.3	35
41	The role of novel Rydberg-valence behaviour in the non-adiabatic dynamics of tertiary aliphatic amines. Chemical Science, 2016, 7, 1826-1839.	3.7	34
42	Effect of exciton self-trapping and molecular conformation on photophysical properties of oligofluorenes. Journal of Chemical Physics, 2009, 131, 154906.	1.2	33
43	Bis(Nâ€heterocyclic carbene) Dipalladium Complexes: Synthesis, Solidâ€State Conformational Studies and Solution Behaviour. European Journal of Inorganic Chemistry, 2009, 2009, 2835-2843.	1.0	32
44	A simple chemical model for clathrate hydrate inhibition by polyvinylcaprolactam. Chemical Communications, 2011, 47, 9891.	2.2	30
45	Photoinduced Electron Transfer in Squaraine Dyes:  Sensitization of Large Band Gap Semiconductors. Journal of Physical Chemistry A, 2002, 106, 11431-11439.	1.1	29
46	Calculations of potential energy surfaces using Monte Carlo configuration interaction. Journal of Chemical Physics, 2012, 137, 194111.	1.2	29
47	Ultrafast relaxation dynamics of electronically excited piperidine: ionization signatures of Rydberg/valence evolution. Physical Chemistry Chemical Physics, 2016, 18, 25070-25079.	1.3	29
48	Mapping the intersection space of the ground and first excited states of fulvene. Molecular Physics, 2006, 104, 1033-1038.	0.8	27
49	Colourimetric Carboxylate Anion Sensors Derived from Viologenâ€Based Receptors. Chemistry - A European Journal, 2010, 16, 1480-1492.	1.7	27
50	Calculations of the low-lying excited states of the TiO2 molecule. Journal of Chemical Physics, 2010, 133, 204302.	1.2	26
51	Vibronic Coupling In Inorganic Systems: Photochemistry, Conical Intersections, And The Jahn–Teller And Pseudo-Jahn–Teller Effects. Advances in Inorganic Chemistry, 2010, , 351-390.	0.4	24
52	Enantioselective lactate binding by chiral tripodal anion hosts derived from amino acids. Organic and Biomolecular Chemistry, 2009, 7, 1554.	1.5	21
53	The structure and UV spectroscopy of benzene-water (Bz-W6) clusters using time-dependent density functional theory. Photochemical and Photobiological Sciences, 2014, 13, 1549-1560.	1.6	20
54	Multireference X-ray emission and absorption spectroscopy calculations from Monte Carlo configuration interaction. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	20

#	Article	IF	Citations
55	Comparing the ultraviolet photostability of azole chromophores. Chemical Science, 2012, 3, 1192.	3.7	19
56	Excited-State Absorption of Conjugated Polymers in the Near-Infrared and Visible: A Computational Study of Oligofluorenes. Journal of Physical Chemistry C, 2013, 117, 6889-6895.	1.5	19
57	Steric control of sorting regimes in self-assembled cages. Chemical Communications, 2021, 57, 12456-12459.	2.2	19
58	Monte Carlo configuration interaction applied to multipole moments, ionization energies, and electron affinities. Journal of Computational Chemistry, 2013, 34, 1083-1093.	1.5	18
59	Relaxation dynamics of photoexcited resorcinol: internal conversion versus H atom tunnelling. Physical Chemistry Chemical Physics, 2014, 16, 550-562.	1.3	18
60	Observation of multi-channel non-adiabatic dynamics in aniline derivatives using time-resolved photoelectron imaging. Faraday Discussions, 2016, 194, 185-208.	1.6	18
61	Transition Metal Complexes of Calix[4]arene: Theoretical Investigations into Small Guest Binding within the Host Cavity. Journal of Physical Chemistry A, 2016, 120, 824-839.	1.1	18
62	Template-free hierarchical self-assembly of a pyrene derivative into supramolecular nanorods. Chemical Communications, 2017, 53, 1973-1976.	2.2	18
63	DNAâ€Intercalative Platinum Anticancer Complexes Photoactivated by Visible Light. Chemistry - A European Journal, 2021, 27, 10711-10716.	1.7	18
64	Photoactivated Osmium Arene Anticancer Complexes. Inorganic Chemistry, 2021, 60, 17450-17461.	1.9	18
65	Two-Photon Absorption-Molecular Structure Investigation Using a Porphycene Chromophore with Potential in Photodynamic Therapy. Journal of Physical Chemistry B, 2012, 116, 11818-11828.	1.2	17
66	Vibronic coupling effects on the structure and spectroscopy of neutral and charged TiO2 clusters. Chemical Physics, 2012, 408, 1-10.	0.9	16
67	Two-photon absorption in porphycenic macrocycles: the effect of tuning the core aromatic electronic structure. Chemical Communications, 2012, 48, 1544-1546.	2.2	16
68	Time-resolved photoionization spectroscopy of mixed Rydberg-valence states: indole case study. Physical Chemistry Chemical Physics, 2015, 17, 26659-26669.	1.3	16
69	Halogenation effects in intramolecular furan Diels–Alder reactions: broad scope synthetic and computational studies. Organic and Biomolecular Chemistry, 2013, 11, 7946.	1.5	15
70	Excited electronic states of MnO4â^: Challenges for wavefunction and density functional response theories. Chemical Physics, 2015, 446, 86-91.	0.9	15
71	Organoiridium Photosensitizers Induce Specific Oxidative Attack on Proteins within Cancer Cells. Angewandte Chemie, 2017, 129, 15094-15098.	1.6	15
72	On the linear and non-linear electronic spectroscopy of chlorophylls: a computational study. Photochemical and Photobiological Sciences, 2014, 13, 103-111.	1.6	13

#	Article	IF	Citations
73	Self-trapping and excited state absorption in fluorene homo-polymer and copolymers with benzothiadiazole and tri-phenylamine. Physical Chemistry Chemical Physics, 2016, 18, 21937-21948.	1.3	13
74	Excited states of porphyrin and porphycene aggregates: Computational insights. Computational and Theoretical Chemistry, 2014, 1040-1041, 274-286.	1.1	12
75	Theoretical Study of the Pseudo-Jahnâ^'Teller Effect in the Edge-Sharing Bioctahedral Complex Mo ₂ (DXyIF) ₂ (O ₂ CCH ₃) ₂ (Î-¼ ₂ -O) Inorganic Chemistry, 2009, 48, 10652-10657.	⟨s u.l७ >2⟨/s	su t1.
76	Ground and excited states of naphthalene–water (naphtha–W ₆) clusters: a computational study. RSC Advances, 2015, 5, 28281-28291.	1.7	11
77	View from the bridge: a pseudo-Jahn–Teller approach to transition metal hydrosilane complexes. New Journal of Chemistry, 2004, 28, 1434-1436.	1.4	10
78	Photostereochemistry and Photoaquation Reactions of [Cr(tn)3]3+: Theoretical Studies Show the Importance of Reduced Coordination Conical Intersection Geometries. Journal of Physical Chemistry A, 2012, 116, 5375-5382.	1,1	10
79	Elucidating the Ring Inversion Mechanism(s) for Biscalixarenes. Journal of Physical Chemistry A, 2014, 118, 7986-8001.	1.1	10
80	Excited States of the Nickel Carbonyls Ni(CO) and Ni(CO) ₄ : Challenging Molecules for Electronic Structure Theory. Journal of Physical Chemistry A, 2015, 119, 10076-10083.	1.1	10
81	Intramolecular Nitrofuran Diels–Alder Reactions: Extremely Substituent-Tolerant Cycloadditions via Asynchronous Transition States. Journal of Organic Chemistry, 2017, 82, 6656-6670.	1.7	10
82	Stress Tensor Eigenvector Following with Next-Generation Quantum Theory of Atoms in Molecules: Excited State Photochemical Reaction Path from Benzene to Benzvalene. Journal of Physical Chemistry A, 2019, 123, 8254-8264.	1.1	10
83	One―and Twoâ€Photonâ€Induced Photochemistry of Iron Pentacarbonyl [Fe(CO) 5]: Insights from Coupled Cluster Response Theory. ChemPhotoChem, 2019, 3, 825-832.	1.5	10
84	Rydberg-to-valence evolution in excited state molecular dynamics. International Reviews in Physical Chemistry, 2020, 39, 517-567.	0.9	10
85	Influence of electronic effects on one- and two-photon absorption in porphyrin isomers. RSC Advances, 2013, 3, 9247.	1.7	9
86	Crossed McMurry Coupling Reactions for Porphycenic Macrocycles: Nonâ€Statistical Selectivity and Rationalisation. European Journal of Organic Chemistry, 2015, 2015, 3818-3823.	1.2	9
87	Bisâ€Calix[4]arenes: From Ligand Design to the Directed Assembly of a Metal–Organic Trigonal Antiprism. Chemistry - A European Journal, 2016, 22, 8791-8795.	1.7	9
88	Toward Understanding of the Lower Rim Binding Preferences of Calix[4]arene. Journal of Physical Chemistry A, 2015, 119, 5804-5815.	1.1	8
89	Control of chirality, bond flexing and anharmonicity in an electric field. International Journal of Quantum Chemistry, 2021, 121, e26793.	1.0	8
90	Ultraviolet Excitation Dynamics of Nitrobenzenes. Journal of Physical Chemistry A, 2021, 125, 7174-7184.	1.1	8

#	Article	IF	CITATIONS
91	Chirality without Stereoisomers: Insight fromÂthe Helical Response of Bond Electrons. ChemPhysChem, 2021, 22, 1989-1995.	1.0	8
92	A Simple Fluorescent Ionâ€Pair Binding Host that Acts as an "lfâ€Then―Logic Gate. European Journal of Inorganic Chemistry, 2009, 2009, 3879-3882.	1.0	7
93	Photoracemization and excited state relaxation through non-adiabatic pathways in chromium (III) oxalate ions. Journal of Chemical Physics, 2012, 137, 034308.	1.2	7
94	Computation of Excited States of Transition Metal Complexes. Structure and Bonding, 2014, , 107-138.	1.0	7
95	Vacuum ultraviolet excited state dynamics of small amides. Journal of Chemical Physics, 2019, 150, 054301.	1.2	7
96	Systematic Study of the Effect of Lower-Rim Methylation on Small Guest Binding within the Host Cavity of Calix[4] arene. Journal of Physical Chemistry A, 2017, 121, 7986-7992.	1.1	6
97	Targetable Mechanical Properties by Switching between Selfâ€Sorting and Coâ€assembly with <i>In Situ</i> Iv Formed Tripodal Ketoenamine Supramolecular Hydrogels. ChemNanoMat, 2018, 4, 853-859.	1.5	6
98	The influence of substituent position on the excited state dynamics operating in 4-, 5- and 6-hydroxyindole. Chemical Physics Letters, 2020, 738, 136870.	1.2	6
99	Theoretical determination of two-photon absorption in biologically relevant pterin derivatives. Photochemical and Photobiological Sciences, 2020, 19, 1538-1547.	1.6	6
100	Discrete Tiâ^'Oâ^'Ti Complexes: Visibleâ€Lightâ€Activated, Homogeneous Alternative to TiO ₂ Photosensitisers. Chemistry - A European Journal, 2020, 26, 9486-9494.	1.7	6
101	Photoisomerization in a Platinumâ´´Amido Pincer Complex: An Excited-State Reaction Pathway Controlled by Localized Ligand Photochemistry. Journal of Physical Chemistry Letters, 2010, 1, 1301-1306.	2.1	5
102	A Time-Dependent Density Functional Theory Study of the Structure and Electronic Spectroscopy of the Group 7 Mixed-Metal Carbonyls: MnTc(CO) _{10} , MnRe(CO) _{10} , and TcRe(CO) _{10} . Journal of Physical Chemistry A, 2012, 116, 9295-9304.	1.1	5
103	Computational Study of the Interactions between Benzene and Crystalline Ice I _h : Ground and Excited States. ChemPhysChem, 2016, 17, 4079-4089.	1.0	5
104	The role of the natural transition orbital density in the SOÂâ†'ÂS1 and SOÂâ†'ÂS2 transitions of fulvene with next generation QTAIM. Chemical Physics Letters, 2020, 751, 137556.	1.2	5
105	Molecular properties and excited state van der Waals potentials in the NO A ² f£ ⁺ + O ₂ Xf£ _g ^{â^'} collision complex. Physical Chemistry Chemical Physics, 2022, 24, 7983-7993.	1.3	5
106	Development of spinâ€orbit coupling for stochastic configuration interaction techniques. Journal of Computational Chemistry, 2018, 39, 319-327.	1.5	4
107	A systematic construction of configuration interaction wavefunctions in the complete CI space. Journal of Chemical Physics, 2019, 151, 164112.	1.2	4
108	The Jahn–Teller Effect in Binary Transition Metal Carbonyl Complexes. Springer Series in Chemical Physics, 2009, , 311-344.	0.2	4

#	Article	IF	CITATIONS
109	Next generation quantum theory of atoms in molecules for the design of emitters exhibiting thermally activated delayed fluorescence with laser irradiation. Journal of Computational Chemistry, 2022, 43, 206-214.	1.5	4
110	Unusual Structure-Energy Correlations in Intramolecular Diels–Alder Reaction Transition States. Molecules, 2014, 19, 15535-15545.	1.7	3
111	Excitedâ€State Dynamics of a Twoâ€Photonâ€Activatable Ruthenium Prodrug. ChemPhysChem, 2016, 17, 221-224.	1.0	3
112	Positronic molecule calculations using Monte Carlo configuration interaction. Chemical Physics Letters, 2016, 645, 106-111.	1.2	3
113	Investigation of challenging spin systems using <scp>M</scp> onte <scp>C</scp> arlo configuration interaction and the density matrix renormalization group. Journal of Computational Chemistry, 2017, 38, 2701-2712.	1.5	3
114	Properties of Conjugated Materials from Quantum Chemistry Coupled to Molecular Dynamics Generated Ensembles. Journal of Physical Chemistry A, 2020, 124, 10667-10677.	1.1	1
115	Innentitelbild: Organoiridium Photosensitizers Induce Specific Oxidative Attack on Proteins within Cancer Cells (Angew. Chem. 47/2017). Angewandte Chemie, 2017, 129, 14968-14968.	1.6	0
116	Frontispiece: Discrete Tiâ^'Oâ^'Ti Complexes: Visibleâ€Lightâ€Activated, Homogeneous Alternative to TiO ₂ Photosensitisers. Chemistry - A European Journal, 2020, 26, .	1.7	0
117	Chemical functionality at the liquid surface of pure unsaturated fatty acids. Environmental Science Atmospheres, 0, , .	0.9	0
118	The effect of substituents and their positions on a series of disubstituted naphthalene bromide salts towards intermolecular interactions and crystal packing. CrystEngComm, 0, , .	1.3	0