
Sathish Kumar Mungamuri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2400427/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Survival Signaling by Notch1: Mammalian Target of Rapamycin (mTOR)–Dependent Inhibition of p53. Cancer Research, 2006, 66, 4715-4724.	0.4	233
2	FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. Nature Cell Biology, 2011, 13, 1092-1099.	4.6	231
3	Foxo3 Is Essential for the Regulation of Ataxia Telangiectasia Mutated and Oxidative Stress-mediated Homeostasis of Hematopoietic Stem Cells. Journal of Biological Chemistry, 2008, 283, 25692-25705.	1.6	225
4	Tumor cell entry into the lymph node is controlled by CCL1 chemokine expressed by lymph node lymphatic sinuses. Journal of Experimental Medicine, 2013, 210, 1509-1528.	4.2	181
5	Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity. Journal of Clinical Investigation, 2018, 128, 5647-5662.	3.9	143
6	ROS-mediated amplification of AKT/mTOR signalling pathway leads to myeloproliferative syndrome in Foxo3â^'/âr' mice. EMBO Journal, 2010, 29, 4118-4131.	3.5	126
7	p53-dependent gene repression through p21 is mediated by recruitment of E2F4 repression complexes. Oncogene, 2014, 33, 3959-3969.	2.6	88
8	p53 Serves as a Host Antiviral Factor That Enhances Innate and Adaptive Immune Responses to Influenza A Virus. Journal of Immunology, 2011, 187, 6428-6436.	0.4	77
9	FOXO3â€mTOR metabolic cooperation in the regulation of erythroid cell maturation and homeostasis. American Journal of Hematology, 2014, 89, 954-963.	2.0	73
10	The C terminus of p53 regulates gene expression by multiple mechanisms in a target- and tissue-specific manner in vivo. Genes and Development, 2013, 27, 1868-1885.	2.7	61
11	β-Catenin-Independent Activation of TCF1/LEF1 in Human Hematopoietic Tumor Cells through Interaction with ATF2 Transcription Factors. PLoS Genetics, 2013, 9, e1003603.	1.5	60
12	CRISPR-Barcoding for Intratumor Genetic Heterogeneity Modeling and Functional Analysis of Oncogenic Driver Mutations. Molecular Cell, 2016, 63, 526-538.	4.5	58
13	p53-mediated heterochromatin reorganization regulates its cell fate decisions. Nature Structural and Molecular Biology, 2012, 19, 478-484.	3.6	49
14	USP7 Enforces Heterochromatinization of p53 Target Promoters by Protecting SUV39H1 from MDM2-Mediated Degradation. Cell Reports, 2016, 14, 2528-2537.	2.9	49
15	Angiomotin stabilization by tankyrase inhibitors antagonizes constitutive TEAD-dependent transcription and proliferation of human tumor cells with Hippo pathway core component mutations. Oncotarget, 2016, 7, 28765-28782.	0.8	43
16	Chromatin Modifications Sequentially Enhance ErbB2 Expression in ErbB2-Positive Breast Cancers. Cell Reports, 2013, 5, 302-313.	2.9	40
17	Growth hormone induces Notch1 signaling in podocytes and contributes to proteinuria in diabetic nephropathy. Journal of Biological Chemistry, 2019, 294, 16109-16122.	1.6	38
18	Nanomaterials multifunctional behavior for enlightened cancer therapeutics. Seminars in Cancer Biology, 2021, 69, 178-189.	4.3	29

#	Article	IF	CITATIONS
19	Hypoxia induces ZEB2 in podocytes: Implications in the pathogenesis of proteinuria. Journal of Cellular Physiology, 2019, 234, 6503-6518.	2.0	27
20	Stabilization of hypoxiaâ€inducible factor 1α by cobalt chloride impairs podocyte morphology and slitâ€diaphragm function. Journal of Cellular Biochemistry, 2019, 120, 7667-7678.	1.2	24
21	Ash2L enables P53-dependent apoptosis by favoring stable transcription pre-initiation complex formation on its pro-apoptotic target promoters. Oncogene, 2015, 34, 2461-2470.	2.6	22
22	Glatiramer Acetate Enhances Myeloid-Derived Suppressor Cell Function via Recognition of Paired Ig-like Receptor B. Journal of Immunology, 2018, 201, 1727-1734.	0.4	13
23	Role of epigenetic alterations in aflatoxinâ€induced hepatocellular carcinoma. Liver Cancer International, 2020, 1, 41-50.	0.2	10
24	Toxicokinetic analysis of commonly used pesticides using data on acute poisoning cases from Hyderabad, South India. Chemosphere, 2021, 268, 129488.	4.2	10
25	Understanding the Alterations in Lipid Metabolism in NAFLD Progression: Current Trends and Future Directions. Critical Reviews in Oncogenesis, 2021, 26, 35-49.	0.2	8
26	The promise(s) of mesenchymal stem cell therapy in averting preclinical diabetes: lessons from in vivo and in vitro model systems. Scientific Reports, 2021, 11, 16983.	1.6	5
27	Human placental mesenchymal stromal cell therapy restores the cytokine efflux and insulin signaling in the skeletal muscle of obesity-induced type 2 diabetes rat model. Human Cell, 2022, 35, 557.	1.2	3
28	Oxidative Stress-Mediated Activation of AKT/mTOR Signaling Pathway Leads to Myeloproliferative Syndrome in FoxO3 Null Mice: A Role for Lnk Adaptor Protein. Blood, 2008, 112, 509-509.	0.6	2
29	A simple and sensitive liquid chromatography–tandem mass spectrometry method for quantification of multiâ€residual pesticides in blood. Separation Science Plus, 2022, 5, 193-206.	0.3	2
30	Targeting the Epigenome as a Therapeutic Strategy for Pancreatic Tumors: DNA and Histone Modifying Enzymes. , 2019, , 133-157.		0
31	Targeting the epigenome as a therapeutic strategy for pancreatic tumors. , 2019, , 211-244.		0
32	Immunotherapy for Diabetogenic Pancreatitis and Pancreatic Cancer: An Update. , 2019, , 215-236.		0
33	Role of mTOR Signaling in Erythropoiesis. Blood, 2008, 112, 3870-3870.	0.6	0