Muhammad Hilmy Alfaruqi

List of Publications by Citations

Source: https://exaly.com/author-pdf/2400366/muhammad-hilmy-alfaruqi-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

52
papers3,661
citations25
h-index53
ext. papers4,609
ext. citations9.6
avg, IF5.38
L-index

#	Paper	IF	Citations
52	Electrochemically Induced Structural Transformation in a EMnO2Cathode of a High Capacity Zinc-Ion Battery System. <i>Chemistry of Materials</i> , 2015 , 27, 3609-3620	9.6	549
51	Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode. <i>Chemistry of Materials</i> , 2017 , 29, 1684-1694	9.6	342
50	NaVOBHO Barnesite Nanorod: An Open Door to Display a Stable and High Energy for Aqueous Rechargeable Zn-Ion Batteries as Cathodes. <i>Nano Letters</i> , 2018 , 18, 2402-2410	11.5	341
49	A layered EMnO 2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. <i>Electrochemistry Communications</i> , 2015 , 60, 121-125	5.1	307
48	Enhanced reversible divalent zinc storage in a structurally stable EMnO 2 nanorod electrode. Journal of Power Sources, 2015 , 288, 320-327	8.9	240
47	Aqueous rechargeable Zn-ion batteries: an imperishable and high-energy Zn2V2O7 nanowire cathode through intercalation regulation. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 3850-3856	13	212
46	Facile synthesis and the exploration of the zinc storage mechanism of EMnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23299-23309	13	194
45	Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. <i>Electrochimica Acta</i> , 2018 , 276, 1-11	6.7	138
44	K2V6O16I2.7H2O nanorod cathode: an advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 15530-15539	13	132
43	Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments. <i>ACS Energy Letters</i> , 2020 , 5, 2376-2400	20.1	128
42	A high surface area tunnel-type \(\text{MnO2} \) nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries. \(\text{Chemical Physics Letters, \textbf{2016}, 650, 64-68 \)	2.5	103
41	Ambient redox synthesis of vanadium-doped manganese dioxide nanoparticles and their enhanced zinc storage properties. <i>Applied Surface Science</i> , 2017 , 404, 435-442	6.7	91
40	Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications. <i>Journal of Energy Chemistry</i> , 2017 , 26, 815-819	12	<i>75</i>
39	MOF-derived mesoporous anatase TiO2 as anode material for lithiumIbn batteries with high rate capability and long cycle stability. <i>Journal of Alloys and Compounds</i> , 2016 , 674, 174-178	5.7	67
38	K+ intercalated V2O5 nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20335-20347	13	67
37	Hierarchical porous anatase TiO2 derived from a titanium metal-organic framework as a superior anode material for lithium ion batteries. <i>Chemical Communications</i> , 2015 , 51, 12274-7	5.8	64
36	Facile synthesis of pyrite (FeS/C) nanoparticles as an electrode material for non-aqueous hybrid electrochemical capacitors. <i>Nanoscale</i> , 2018 , 10, 5938-5949	7.7	38

35	Pyrosynthesis of Na V (PO) @C Cathodes for Safe and Low-Cost Aqueous Hybrid Batteries. <i>ChemSusChem</i> , 2018 , 11, 2239-2247	8.3	38	
34	Pyro-Synthesis of Nanostructured Spinel ZnMn2O4/C as Negative Electrode for Rechargeable Lithium-Ion Batteries. <i>Electrochimica Acta</i> , 2015 , 151, 558-564	6.7	37	
33	One-Step Pyro-Synthesis of a Nanostructured Mn O /C Electrode with Long Cycle Stability for Rechargeable Lithium-Ion Batteries. <i>Chemistry - A European Journal</i> , 2016 , 22, 2039-2045	4.8	35	
32	A new rechargeable battery based on a zinc anode and a NaVO nanorod cathode. <i>Chemical Communications</i> , 2019 , 55, 3793-3796	5.8	32	
31	In Situ Oriented Mn Deficient ZnMnO@C Nanoarchitecture for Durable Rechargeable Aqueous Zinc-Ion Batteries. <i>Advanced Science</i> , 2021 , 8, 2002636	13.6	32	
30	An Enhanced High-Rate NaV(PO)-NiP Nanocomposite Cathode with Stable Lifetime for Sodium-Ion Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 10 (1978) 10 (1978) 11 (1978) 12 (1978) 12 (1978) 12 (1978) 12 (1978) 12 (1978) 13	9.5	31	
29	First principles calculations study of EMnO2 as a potential cathode for Al-ion battery application. Journal of Materials Chemistry A, 2019 , 7, 26966-26974	13	31	
28	Porous TiN nanoparticles embedded in a N-doped carbon composite derived from metal B rganic frameworks as a superior anode in lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4706	-4 7 10	26	
27	Electrochemical lithium storage of a ZnFe2O4/graphene nanocomposite as an anode material for rechargeable lithium ion batteries. <i>RSC Advances</i> , 2014 , 4, 47087-47095	3.7	25	
26	Facile synthesis of reduced graphene oxide by modified Hummer's method as anode material for Li-, Na- and K-ion secondary batteries. <i>Royal Society Open Science</i> , 2019 , 6, 181978	3.3	24	
25	Initial investigation and evaluation of potassium metal as an anode for rechargeable potassium batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 16718-16737	13	22	
24	A rapid polyol combustion strategy towards scalable synthesis of nanostructured LiFePO4/C cathodes for Li-ion batteries. <i>Journal of Solid State Electrochemistry</i> , 2014 , 18, 1557-1567	2.6	21	
23	Multidimensional Na4VMn0.9Cu0.1(PO4)3/C cotton-candy cathode materials for high energy Na-ion batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 12055-12068	13	19	
22	Morphology-controlled LiFePO4 cathodes by a simple polyol reaction for Li-ion batteries. <i>Materials Characterization</i> , 2014 , 89, 93-101	3.9	19	
21	A two-step solid state synthesis of LiFePO4/C cathode with varying carbon contents for Li-ion batteries. <i>Ceramics International</i> , 2014 , 40, 1561-1567	5.1	19	
20	Monoclinic-Orthorhombic Na1.1Li2.0V2(PO4)3/C Composite Cathode for Na+/Li+ Hybrid-Ion Batteries. <i>Chemistry of Materials</i> , 2017 , 29, 6642-6652	9.6	15	
19	A Porous TiO2Electrode Prepared by an Energy Efficient Pyro-Synthesis for Advanced Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A1220-A1226	3.9	14	
18	Carbon-coated rhombohedral Li2NaV2(PO4)3 nanoflake cathode for Li-ion battery with excellent cycleability and rate capability. <i>Chemical Physics Letters</i> , 2017 , 681, 44-49	2.5	13	

17	Ultrafine molybdenum oxycarbide nanoparticles embedded in N-doped carbon as a superior anode material for lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2017 , 696, 143-149	5.7	12
16	Hyper oxidized V6O13+xhH2O layered cathode for aqueous rechargeable Zn battery: Effect on dual carriers transportation and parasitic reactions. <i>Energy Storage Materials</i> , 2021 , 35, 47-61	19.4	12
15	Uniform Carbon Coated Na3V2(PO4)2O2xF3Øx Nanoparticles for Sodium Ion Batteries as Cathode. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 18826-18834	8.3	11
14	Tungsten Oxide/Zirconia as a Functional Polysulfide Mediator for High-Performance LithiumBulfur Batteries. <i>ACS Energy Letters</i> , 2020 , 5, 3168-3175	20.1	11
13	Cationic and transition metal co-substitution strategy of O3-type NaCrO2 cathode for high-energy sodium-ion batteries. <i>Energy Storage Materials</i> , 2021 , 41, 183-195	19.4	11
12	Density Functional Theory Investigation of Mixed Transition Metals in Olivine and Tavorite Cathode Materials for Li-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 16376-16386	9.5	10
11	Quasi-solid-state zinc-ion battery based on \textit{\textit{M}} nO2 cathode with husk-like morphology. \textit{Electrochimica Acta, \textit{2020}, 345, 136189}	6.7	9
10	Na2.3Cu1.1Mn2O7hanoflakes as enhanced cathode materials for high-energy sodium-ion batteries achieved by a rapid pyrosynthesis approach. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 770-778	3 ¹³	9
9	Pyro-synthesis of Na2FeP2O7 Nano-plates as Cathode for Sodium-ion Batteries with Long Cycle Stability. <i>Journal of the Korean Ceramic Society</i> , 2016 , 53, 406-410	2.2	7
8	A new material discovery platform of stable layered oxide cathodes for K-ion batteries. <i>Energy and Environmental Science</i> ,	35.4	7
7	One-pot pyro synthesis of a nanosized-LiMnO/C cathode with enhanced lithium storage properties <i>RSC Advances</i> , 2019 , 9, 24030-24038	3.7	6
6	Stable Solid Electrolyte Interphase for Long-Life Potassium Metal Batteries. <i>ACS Energy Letters</i> , 2022 , 7, 401-409	20.1	4
5	Triggering the theoretical capacity of Na1.1V3O7.9 nanorod cathode by polypyrrole coating for high-energy zinc-ion batteries. <i>Chemical Engineering Journal</i> , 2022 , 446, 137069	14.7	4
4	Investigation of K-ion storage performances in a bismuth sulfide-carbon nanotube composite anode <i>RSC Advances</i> , 2020 , 10, 6536-6539	3.7	3
3	Investigation of superior sodium storage and reversible Na2S conversion reactions in a porous NiS2@C composite using in operando X-ray diffraction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 24401	-24407	, 3
2	Validating the Structural (In)stability of P3- and P2-NaMgMnO-Layered Cathodes for Sodium-Ion Batteries: A Time-Decisive Approach. <i>ACS Applied Materials & Decision (Control of the Control of the Contr</i>	9.5	1
1	Recent Developments of Zinc-Ion Batteries 2021 , 27-57		0