
Heather E Golden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/239960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Do geographically isolated wetlands influence landscape functions?. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1978-1986.	3.3	297
2	Enhancing protection for vulnerable waters. Nature Geoscience, 2017, 10, 809-815.	5.4	141
3	Hydrologic connectivity between geographically isolated wetlands and surface water systems: A review of select modeling methods. Environmental Modelling and Software, 2014, 53, 190-206.	1.9	137
4	Connectivity of Streams and Wetlands to Downstream Waters: An Integrated Systems Framework. Journal of the American Water Resources Association, 2018, 54, 298-322.	1.0	119
5	Green infrastructure and its catchmentâ€scale effects: an emerging science. Wiley Interdisciplinary Reviews: Water, 2018, 5, 1254.	2.8	108
6	Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine. Remote Sensing of Environment, 2019, 228, 1-13.	4.6	108
7	Integrating geographically isolated wetlands into land management decisions. Frontiers in Ecology and the Environment, 2017, 15, 319-327.	1.9	92
8	Depressional wetlands affect watershed hydrological, biogeochemical, and ecological functions. Ecological Applications, 2018, 28, 953-966.	1.8	91
9	Hydrologic model predictability improves with spatially explicit calibration using remotely sensed evapotranspiration and biophysical parameters. Journal of Hydrology, 2018, 567, 668-683.	2.3	86
10	Geographically isolated wetlands and watershed hydrology: A modified model analysis. Journal of Hydrology, 2015, 529, 240-256.	2.3	82
11	An improved representation of geographically isolated wetlands in a watershedâ€scale hydrologic model. Hydrological Processes, 2016, 30, 4168-4184.	1.1	80
12	How Hydrologic Connectivity Regulates Water Quality in River Corridors. Journal of the American Water Resources Association, 2019, 55, 369-381.	1.0	75
13	Relative effects of geographically isolated wetlands on streamflow: a watershedâ€scale analysis. Ecohydrology, 2016, 9, 21-38.	1.1	72
14	Critical Review of Eutrophication Models for Life Cycle Assessment. Environmental Science & Technology, 2018, 52, 9562-9578.	4.6	62
15	Physical and Chemical Connectivity of Streams and Riparian Wetlands to Downstream Waters: A Synthesis. Journal of the American Water Resources Association, 2018, 54, 323-345.	1.0	53
16	Non-floodplain Wetlands Affect Watershed Nutrient Dynamics: A Critical Review. Environmental Science & Technology, 2019, 53, 7203-7214.	4.6	45
17	Surface Depression and Wetland Water Storage Improves Major River Basin Hydrologic Predictions. Water Resources Research, 2020, 56, e2019WR026561.	1.7	45
18	Estimating restorable wetland water storage at landscape scales. Hydrological Processes, 2018, 32, 305-313.	1.1	44

Heather E Golden

#	Article	IF	CITATIONS
19	Urban Stream Burial Increases Watershed-Scale Nitrate Export. PLoS ONE, 2015, 10, e0132256.	1.1	34
20	A watershed-scale model for depressional wetland-rich landscapes. Journal of Hydrology X, 2018, 1, 100002.	0.8	31
21	Featured Collection Introduction: Connectivity of Streams and Wetlands to Downstream Waters. Journal of the American Water Resources Association, 2018, 54, 287-297.	1.0	30
22	Soil redistribution and pedologic transformations in coastal plain croplands. Earth Surface Processes and Landforms, 1999, 24, 23-39.	1.2	29
23	Watershed Modeling with Remotely Sensed Big Data: MODIS Leaf Area Index Improves Hydrology and Water Quality Predictions. Remote Sensing, 2020, 12, 2148.	1.8	29
24	Cumulative Effects of Low Impact Development on Watershed Hydrology in a Mixed Land-Cover System. Water (Switzerland), 2018, 10, 991.	1.2	28
25	Embedding co-production and addressing uncertainty in watershed modeling decision-support tools: Successes and challenges. Environmental Modelling and Software, 2018, 109, 368-379.	1.9	28
26	Modeling Connectivity of Nonâ€floodplain Wetlands: Insights, Approaches, and Recommendations. Journal of the American Water Resources Association, 2019, 55, 559-577.	1.0	26
27	Urban vacant lands impart hydrological benefits across city landscapes. Nature Communications, 2020, 11, 1563.	5.8	26
28	Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition. Journal of the American Water Resources Association, 2016, 52, 1251-1274.	1.0	23
29	Vulnerable Waters are Essential to Watershed Resilience. Ecosystems, 2023, 26, 1-28.	1.6	21
30	A Hydrologic Landscapes Perspective on Groundwater Connectivity of Depressional Wetlands. Water (Switzerland), 2020, 12, 50.	1.2	20
31	The changing face of floodplains in the Mississippi River Basin detected by a 60-year land use change dataset. Scientific Data, 2021, 8, 271.	2.4	18
32	Improving global flood and drought predictions: integrating non-floodplain wetlands into watershed hydrologic models. Environmental Research Letters, 2021, 16, 091002.	2.2	15
33	Characterizing mercury concentrations and fluxes in a Coastal Plain watershed: Insights from dynamic modeling and data. Journal of Geophysical Research, 2012, 117, .	3.3	14
34	Land-Cover Changes to Surface-Water Buffers in the Midwestern USA: 25 Years of Landsat Data Analyses (1993–2017). Remote Sensing, 2020, 12, 754.	1.8	13
35	Wetland restoration yields dynamic nitrate responses across the Upper Mississippi river basin. Environmental Research Communications, 2021, 3, 095002.	0.9	13
36	Linking air quality and watershed models for environmental assessments: Analysis of the effects of model-specific precipitation estimates on calculated water flux. Environmental Modelling and Software, 2010, 25, 1722-1737.	1.9	12

Heather E Golden

#	Article	IF	CITATIONS
37	Simulated watershed mercury and nitrate flux responses to multiple land cover conversion scenarios. Environmental Toxicology and Chemistry, 2011, 30, 773-786.	2.2	12
38	Contemporary estimates of atmospheric nitrogen deposition to the watersheds of New York State, USA. Environmental Monitoring and Assessment, 2009, 155, 319-339.	1.3	10
39	Climate change and watershed mercury export: a multiple projection and model analysis. Environmental Toxicology and Chemistry, 2013, 32, 2165-2174.	2.2	10
40	Monthly river temperature trends across the US confound annual changes. Environmental Research Letters, 2021, 16, 104006.	2.2	10
41	Wetland Flowpaths Mediate Nitrogen and Phosphorus Concentrations across the Upper Mississippi River Basin. Journal of the American Water Resources Association, 2023, 59, 1162-1179.	1.0	9
42	<i>K</i> in an Urban World: New Contexts for Hydraulic Conductivity. Journal of the American Water Resources Association, 2021, 57, 493-504.	1.0	9
43	Simple approaches for measuring dry atmospheric nitrogen deposition to watersheds. Water Resources Research, 2008, 44, .	1.7	7
44	Aquatic Carbonâ€Nutrient Dynamics as Emergent Properties of Hydrological, Biogeochemical, and Ecological Interactions: Scientific Advances. Water Resources Research, 2018, 54, 7138-7142.	1.7	7
45	Spatial Variability of Nitrate Concentrations Under Diverse Conditions in Tributaries to a Lake Watershed ¹ . Journal of the American Water Resources Association, 2009, 45, 945-962.	1.0	6
46	Modeling spatially resolved characterization factors for eutrophication potential in life cycle assessment. International Journal of Life Cycle Assessment, 2021, 26, 1832-1846.	2.2	4