Don Collins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2399313/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterizing the volatility and mixing state of ambient fine particles in the summer and winter of urban Beijing. Atmospheric Chemistry and Physics, 2022, 22, 2293-2307.	4.9	2
2	The effect of black carbon aging from NO2 oxidation of SO2 on its morphology, optical and hygroscopic properties. Environmental Research, 2022, 212, 113238.	7.5	7
3	Long- and short-term temporal variability in cloud condensation nuclei spectra over a wide supersaturation range in the Southern Great Plains site. Atmospheric Chemistry and Physics, 2022, 22, 6197-6215.	4.9	1
4	Design and characterization of a new oxidation flow reactor for laboratory and long-term ambient studies. Atmospheric Measurement Techniques, 2021, 14, 2891-2906.	3.1	7
5	Captive Aerosol Growth and Evolution (CAGE) chamber system to investigate particle growth due to secondary aerosol formation. Atmospheric Measurement Techniques, 2021, 14, 3351-3370.	3.1	1
6	Contrasting size-resolved hygroscopicity of fine particles derived by HTDMA and HR-ToF-AMS measurements between summer and winter in Beijing: the impacts of aerosol aging and local emissions. Atmospheric Chemistry and Physics, 2020, 20, 915-929.	4.9	33
7	Modelling the hygroscopic growth factors of aerosol material containing a large water-soluble organic fraction, collected at the Storm Peak Laboratory. Atmospheric Environment, 2019, 214, 116760.	4.1	3
8	Quantifying aerosol size distributions and their temporal variability in the Southern Great Plains, USA. Atmospheric Chemistry and Physics, 2019, 19, 11985-12006.	4.9	13
9	Laboratory measurements of light scattering properties of kaolinite dust at 532Ånm. Aerosol Science and Technology, 2018, 52, 666-678.	3.1	4
10	Global analysis of continental boundary layer new particle formation based on long-term measurements. Atmospheric Chemistry and Physics, 2018, 18, 14737-14756.	4.9	113
11	Influence of Common Assumptions Regarding Aerosol Composition and Mixing State on Predicted CCN Concentration. Atmosphere, 2018, 9, 54.	2.3	8
12	Using different assumptions of aerosol mixing state and chemical composition to predict CCN concentrations based on field measurements in urban Beijing. Atmospheric Chemistry and Physics, 2018, 18, 6907-6921.	4.9	49
13	Microphysical explanation of the RHâ€dependent water affinity of biogenic organic aerosol and its importance for climate. Geophysical Research Letters, 2017, 44, 5167-5177.	4.0	74
14	Uncertainty in Predicting CCN Activity of Aged and Primary Aerosols. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,723.	3.3	39
15	Ageing and hygroscopicity variation of black carbon particles in Beijing measured by a quasi-atmospheric aerosol evolution study (QUALITY) chamber. Atmospheric Chemistry and Physics, 2017, 17, 10333-10348.	4.9	47
16	Hygroscopic growth of water soluble organic carbon isolated from atmospheric aerosol collected at US national parks and Storm Peak Laboratory. Atmospheric Chemistry and Physics, 2017, 17, 2555-2571.	4.9	25
17	Analysis of a Multi-Year Record of Size-Resolved Hygroscopicity Measurements from a Rural Site in the U.S Aerosol and Air Quality Research, 2017, 17, 1489-1500.	2.1	10
18	OH-Initiated Oxidation of <i>m</i> -Xylene on Black Carbon Aging. Environmental Science & Technology, 2016, 50, 8605-8612.	10.0	47

#	Article	IF	CITATIONS
19	Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4266-4271.	7.1	453
20	Phase state of ambient aerosol linked with water uptake and chemical aging in the southeastern US. Atmospheric Chemistry and Physics, 2016, 16, 11163-11176.	4.9	64
21	Hygroscopic Characteristics of Alkylaminium Carboxylate Aerosols. Environmental Science & Technology, 2016, 50, 2292-2300.	10.0	18
22	Evaluation of assumptions for estimating chemical light extinction at U.S. national parks. Journal of the Air and Waste Management Association, 2015, 65, 249-260.	1.9	11
23	Cloud forming potential of oligomers relevant to secondary organic aerosols. Geophysical Research Letters, 2014, 41, 6538-6545.	4.0	17
24	Role of OH-Initiated Oxidation of Isoprene in Aging of Combustion Soot. Environmental Science & Technology, 2013, 47, 2254-2263.	10.0	75
25	Chemical and hygroscopic properties of aerosol organics at Storm Peak Laboratory. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4767-4779.	3.3	34
26	Measurements of submicron aerosols in Houston, Texas during the 2009 SHARP field campaign. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,518.	3.3	56
27	The Queensland Cloud Seeding Research Program. Bulletin of the American Meteorological Society, 2012, 93, 75-90.	3.3	29
28	Racoro Extended-Term Aircraft Observations of Boundary Layer Clouds. Bulletin of the American Meteorological Society, 2012, 93, 861-878.	3.3	81
29	Relating hygroscopicity and composition of organic aerosol particulate matter. Atmospheric Chemistry and Physics, 2011, 11, 1155-1165.	4.9	326
30	Measurement of ambient aerosol hydration state at Great Smoky Mountains National Park in the southeastern United States. Atmospheric Chemistry and Physics, 2011, 11, 12085-12107.	4.9	17
31	Estimates of aqueous-phase sulfate production from tandem differential mobility analysis. Atmospheric Environment, 2011, 45, 5484-5492.	4.1	0
32	Characterization of particle cloud droplet activity and composition in the free troposphere and the boundary layer during INTEX-B. Atmospheric Chemistry and Physics, 2010, 10, 6627-6644.	4.9	50
33	The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols. Atmospheric Chemistry and Physics, 2010, 10, 7267-7283.	4.9	206
34	Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6634-6639.	7.1	415
35	Influence of air mass source region on nanoparticle events and hygroscopicity in central Virginia, U.S Atmospheric Environment, 2009, 43, 3586-3595.	4.1	16
36	Air pollutant concentrations near three Texas roadways, Part I: Ultrafine particles. Atmospheric Environment, 2009, 43, 4513-4522.	4.1	48

#	Article	IF	CITATIONS
37	Air pollutant concentrations near three Texas roadways, part II: Chemical characterization and transformation of pollutants. Atmospheric Environment, 2009, 43, 4523-4534.	4.1	61
38	Evolution of Organic Aerosols in the Atmosphere. Science, 2009, 326, 1525-1529.	12.6	3,374
39	Aerosol characterization studies at Great Smoky Mountains National Park, summer 2006. Journal of Geophysical Research, 2009, 114, .	3.3	19
40	Aerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO/INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 6727-6742.	4.9	76
41	Evolution of Asian aerosols during transpacific transport in INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 7257-7287.	4.9	170
42	Open cellular structure in marine stratocumulus sheets. Journal of Geophysical Research, 2008, 113, .	3.3	101
43	Phase changes of ambient particles in the Southern Great Plains of Oklahoma. Geophysical Research Letters, 2008, 35, .	4.0	28
44	Isolation of Ambient Particles of Known Critical Supersaturation: The Differential Activation Separator (DAS). Aerosol Science and Technology, 2008, 42, 759-772.	3.1	4
45	Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign. Atmospheric Chemistry and Physics, 2008, 8, 4027-4048.	4.9	411
46	Physical and chemical properties of the aerosol within the southeastern Pacific marine boundary layer. Journal of Geophysical Research, 2007, 112, .	3.3	59
47	Application of aerosol hygroscopicity measured at the Atmospheric Radiation Measurement Program's Southern Great Plains site to examine composition and evolution. Journal of Geophysical Research, 2006, 111, .	3.3	26
48	Characterization of ambient aerosol from measurements of cloud condensation nuclei during the 2003 Atmospheric Radiation Measurement Aerosol Intensive Observational Period at the Southern Great Plains site in Oklahoma. Journal of Geophysical Research, 2006, 111, .	3.3	35
49	Comparison of methods for deriving aerosol asymmetry parameter. Journal of Geophysical Research, 2006, 111, .	3.3	220
50	Coupling aerosol size distributions and size-resolved hygroscopicity to predict humidity-dependent optical properties and cloud condensation nuclei spectra. Journal of Geophysical Research, 2006, 111, .	3.3	44
51	Expected impact of an aged biomass burning aerosol on cloud condensation nuclei and cloud droplet concentrations. Journal of Geophysical Research, 2006, 111, .	3.3	26
52	Temporal variation of aerosol properties at a rural continental site and study of aerosol evolution through growth law analysis. Journal of Geophysical Research, 2006, 111, .	3.3	10
53	Contribution of secondary condensable organics to new particle formation: A case study in Houston, Texas. Geophysical Research Letters, 2006, 33,	4.0	67
54	Organics in the Northeastern Pacific and their impacts on aerosol hygroscopicity in the subsaturated and supersaturated regimes. Atmospheric Chemistry and Physics, 2006, 6, 4101-4115.	4.9	29

#	Article	IF	CITATIONS
55	Coupling between Land Ecosystems and the Atmospheric Hydrologic Cycle through Biogenic Aerosol Pathways. Bulletin of the American Meteorological Society, 2005, 86, 1738-1742.	3.3	43
56	Continuous Collection of Soluble Atmospheric Particles with a Wetted Hydrophilic Filter. Analytical Chemistry, 2005, 77, 8031-8040.	6.5	20
57	Diurnal variations in the hygroscopic growth cycles of ambient aerosol populations. Journal of Geophysical Research, 2005, 110, .	3.3	15
58	Daily, Seasonal, and Spatial Trends in PM2.5Mass and Composition in Southeast Texas Special Issue ofAerosol Science and Technologyon Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology, 2004, 38, 14-26.	3.1	76
59	Integration of size distributions and size-resolved hygroscopicity measured during the Houston Supersite for compositional categorization of the aerosol. Atmospheric Environment, 2004, 38, 3285-3303.	4.1	66
60	The Scanning DMA Transfer Function. Aerosol Science and Technology, 2004, 38, 833-850.	3.1	65
61	Direct measurement of the hydration state of ambient aerosol populations. Journal of Geophysical Research, 2004, 109, .	3.3	45
62	Use of In Situ Data to Test a Raman Lidar–Based Cloud Condensation Nuclei Remote Sensing Method. Journal of Atmospheric and Oceanic Technology, 2004, 21, 387-394.	1.3	21
63	Fast Mixing Condensation Nucleus Counter: Application to Rapid Scanning Differential Mobility Analyzer Measurements. Aerosol Science and Technology, 2002, 36, 678-689.	3.1	75
64	Clear-column radiative closure during ACE-Asia: Comparison of multiwavelength extinction derived from particle size and composition with results from Sun photometry. Journal of Geophysical Research, 2002, 107, AAC 7-1-AAC 7-22.	3.3	64
65	Improved Inversion of Scanning DMA Data. Aerosol Science and Technology, 2002, 36, 1-9.	3.1	139
66	Aerosol particle chemical characteristics measured from aircraft in the lower troposphere during ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 185-200.	1.6	7
67	In situ aerosol-size distributions and clear-column radiative closure during ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 498-525.	1.6	38
68	Clear-sky closure studies of lower tropospheric aerosol and water vapor during ACE-2 using airborne sunphotometer, airborne in-situ, space-borne, and ground-based measurements. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 568-593.	1.6	42
69	CCN measurements during ACE-2 and their relationship to cloud microphysical properties. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 843-867.	1.6	82
70	Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 484-497.	1.6	4
71	Shipboard sunphotometer measurements of aerosol optical depth spectra and columnar water vapor during ACE-2, and comparison with selected land, ship, aircraft, and satellite measurements. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 594-619.	1.6	23
72	Influence of humidity on the aerosol scattering coefficient and its effect on the upwelling radiance during ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 546-567.	1.6	73

#	Article	IF	CITATIONS
73	Airborne analysis of the Los Angeles aerosol. Atmospheric Environment, 2000, 34, 4155-4173.	4.1	28
74	In situ aerosol-size distributions and clear-column radiative closure during ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 498-525.	1.6	52
75	THE SCANNING FLOW DMA. Journal of Aerosol Science, 2000, 31, 1129-1144.	3.8	19
76	Formation of Organic Aerosols from the Oxidation of Biogenic Hydrocarbons. Journal of Atmospheric Chemistry, 1997, 26, 189-222.	3.2	736
77	Gas/Particle Partitioning and Secondary Organic Aerosol Yields. Environmental Science & Technology, 1996, 30, 2580-2585.	10.0	1,383