
## Bruno Le Pioufle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2399298/publications.pdf Version: 2024-02-01



RDUNG LE PIQUELE

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Bioimpedance single cell sensing of low and high density sickle erythrocytes using microfluidics.<br>Biosensors and Bioelectronics: X, 2022, 10, 100140.                                                                             | 1.7  | 1         |
| 2  | Focus on using nanopore technology for societal health, environmental, and energy challenges.<br>Nano Research, 2022, 15, 9906-9920.                                                                                                 | 10.4 | 11        |
| 3  | Oxidative stress activates red cell adhesion to laminin in sickle cell disease. Haematologica, 2021, 106, 2478-2488.                                                                                                                 | 3.5  | 10        |
| 4  | Electrorotation of single microalgae cells during lipid accumulation for assessing cellular dielectric properties and total lipid contents. Biosensors and Bioelectronics, 2021, 173, 112772.                                        | 10.1 | 7         |
| 5  | Two-Dimensionally Arrayed Double-Layer Electrode Device Which Enables Reliable and High-Thoroughput Electrortation. , 2021, , .                                                                                                      |      | 1         |
| 6  | A Microfluidic Device to Statistically Determine the Distribution of Sickle Red Cell Subpopulations Using Bioimpedance. , 2021, , .                                                                                                  |      | 0         |
| 7  | A versatile microfluidic tool for the 3D culture of HepaRG cells seeded at various stages of differentiation. Scientific Reports, 2021, 11, 14075.                                                                                   | 3.3  | 9         |
| 8  | Selective target protein detection using a decorated nanopore into a microfluidic device. Biosensors and Bioelectronics, 2021, 183, 113195.                                                                                          | 10.1 | 17        |
| 9  | Electricity for Fluidics and Bio-Devices. Microtechnology and MEMS, 2020, , 235-308.                                                                                                                                                 | 0.2  | 1         |
| 10 | Characterization of red blood cell microcirculatory parameters using a bioimpedance microfluidic device. Scientific Reports, 2020, 10, 9869.                                                                                         | 3.3  | 21        |
| 11 | Impact of pulsed electric fields and mechanical compressions on the permeability and structure of Chlamydomonas reinhardtii cells. Scientific Reports, 2020, 10, 2668.                                                               | 3.3  | 25        |
| 12 | Brownian Motion and Large Electric Polarizabilities Facilitate Dielectrophoretic Capture of Subâ€200<br>nm Gold Nanoparticles in Water. ChemPhysChem, 2019, 20, 3354-3365.                                                           | 2.1  | 7         |
| 13 | Characterization of sequentially-staged cancer cells using electrorotation. PLoS ONE, 2019, 14, e0222289.                                                                                                                            | 2.5  | 24        |
| 14 | Inducing reversible or irreversible pores in Chlamydomonas reinhardtii with electroporation: Impact of treatment parameters. Algal Research, 2019, 37, 124-132.                                                                      | 4.6  | 31        |
| 15 | Z-Axis Controllable Mille-Feuille Electrode Electrorotation Device Utilizing Levitation Effect. , 2019, , .                                                                                                                          |      | 2         |
| 16 | Reticulocyte and red blood cell deformation triggers specific phosphorylation events. Blood<br>Advances, 2019, 3, 2653-2663.                                                                                                         | 5.2  | 13        |
| 17 | Structural changes of Chlamydomonas reinhardtii cells during lipid enrichment and after solvent exposure. Data in Brief, 2018, 17, 1283-1287.                                                                                        | 1.0  | 8         |
| 18 | Understanding the mechanisms of lipid extraction from microalga Chlamydomonas reinhardtii after<br>electrical field solicitations and mechanical stress within a microfluidic device. Bioresource<br>Technology, 2018, 257, 129-136. | 9.6  | 33        |

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Solid-State Nanopore Easy Chip Integration in a Cheap and Reusable Microfluidic Device for Ion<br>Transport and Polymer Conformation Sensing. ACS Sensors, 2018, 3, 2129-2137.                                                                          | 7.8 | 21        |
| 20 | From current trace to the understanding of confined media. European Physical Journal E, 2018, 41, 99.                                                                                                                                                   | 1.6 | 4         |
| 21 | A microfluidic approach to study the effect of mechanical stress on erythrocytes in sickle cell<br>disease. Lab on A Chip, 2018, 18, 2975-2984.                                                                                                         | 6.0 | 32        |
| 22 | SU-8 microchannels for live cell dielectrophoresis improvements. Microsystem Technologies, 2017, 23, 3901-3908.                                                                                                                                         | 2.0 | 6         |
| 23 | Effects of biomolecules on the electrokinetics of colloidal nanoparticles in liquid suspension. , 2017, , .                                                                                                                                             |     | Ο         |
| 24 | Single Cell Electrical Characterization Techniques. , 2017, , 271-288.                                                                                                                                                                                  |     | 2         |
| 25 | Functionalized Solid-State Nanopore Integrated in a Reusable Microfluidic Device for a Better<br>Stability and Nanoparticle Detection. ACS Applied Materials & Interfaces, 2017, 9, 41634-41640.                                                        | 8.0 | 42        |
| 26 | Effects of Poloxamer 188 on red blood cell membrane properties in sickle cell anaemia. British Journal<br>of Haematology, 2016, 173, 145-149.                                                                                                           | 2.5 | 23        |
| 27 | RF Characterization of Intracellular Microalgae Lipids. Procedia Engineering, 2016, 168, 1287-1290.                                                                                                                                                     | 1.2 | 1         |
| 28 | Nanoparticle Electrical Analysis and Detection with a Solid-state Nanopore in a Microfluidic Device.<br>Procedia Engineering, 2016, 168, 1475-1478.                                                                                                     | 1.2 | 3         |
| 29 | Electric pulses: a flexible tool to manipulate cytosolic calcium concentrations and generate spontaneous-like calcium oscillations in mesenchymal stem cells. Scientific Reports, 2016, 6, 32331.                                                       | 3.3 | 20        |
| 30 | Microdevice for studying the in situ permeabilization and characterization of Chlamydomonas reinhardtii in lipid accumulation phase. Algal Research, 2016, 16, 357-367.                                                                                 | 4.6 | 13        |
| 31 | Single Cell Electrical Characterization Techniques. , 2016, , 1-18.                                                                                                                                                                                     |     | 1         |
| 32 | The Electrorotation as a Tool to Monitor the Dielectric Properties of Spheroid During the Permeabilization. Journal of Membrane Biology, 2016, 249, 593-600.                                                                                            | 2.1 | 11        |
| 33 | A Microfluidic Device for the Real-Time Characterization of Lipid Producing Algae Cell Population<br>Submitted to a Pulsed Electric Field. IFMBE Proceedings, 2016, , 409-413.                                                                          | 0.3 | 2         |
| 34 | Electrorotation as a Versatile Tool to Estimate Dielectric Properties of Multi-scale Biological<br>Samples: from Single Cell to Spheroid Analysis. IFMBE Proceedings, 2016, , 75-78.                                                                    | 0.3 | 3         |
| 35 | Monitoring the permeabilization of a single cell in a microfluidic device, through the estimation of<br>its dielectric properties based on combined dielectrophoresis and electrorotation in situ experiments.<br>Electrophoresis, 2015, 36, 1115-1122. | 2.4 | 26        |
| 36 | Splenic Retention of Plasmodium falciparum Gametocytes To Block the Transmission of Malaria.<br>Antimicrobial Agents and Chemotherapy, 2015, 59, 4206-4214.                                                                                             | 3.2 | 24        |

| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | SU-8 microchannels for live cell dielectrophoresis improvements. , 2015, , .                                                                                                                                                                                            |     | 2         |
| 38 | Reproducing topography and roughness of osteoconductive biomaterials in a microfluidic device.<br>Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 2026-2027.                                                                                     | 1.6 | 2         |
| 39 | A biomimetic microfluidic chip to study the circulation and mechanical retention of red blood cells in the spleen. American Journal of Hematology, 2015, 90, 339-345.                                                                                                   | 4.1 | 65        |
| 40 | Analysis of pulsed electric field effects on cellular tissue with Cole–Cole model: Monitoring<br>permeabilization under inhomogeneous electrical field with bioimpedance parameter variations.<br>Innovative Food Science and Emerging Technologies, 2015, 29, 193-200. | 5.6 | 18        |
| 41 | A generic and label free method based on dielectrophoresis for the continuous separation of microorganism from whole blood samples. Sensors and Actuators B: Chemical, 2015, 212, 335-343.                                                                              | 7.8 | 35        |
| 42 | Microsystème dédié à l'étude de la polarisation diélectrique de microparticules dans le cadre de<br>formation master recherche : application au micropositionnement 3D de cellules par force de<br>diélectrophorèse. J3eA, 2015, 14, 1007.                              | 0.0 | 1         |
| 43 | Effects of Poloxamer 188 on Red Blood Cells Membrane Properties in Sickle Cell Disease. Blood, 2015, 126, 2174-2174.                                                                                                                                                    | 1.4 | 0         |
| 44 | Detection of micro-beads by impedance spectroscopy: Towards a wholly integrated electronic device for biological cells applications. , 2014, , .                                                                                                                        |     | 1         |
| 45 | Low Temperature Irreversible Poly(DiMethyl) Siloxane Packaging of Silanized SU8 Microchannels:<br>Characterization and Lab-on-Chip Application. Journal of Microelectromechanical Systems, 2014, 23,<br>1015-1024.                                                      | 2.5 | 7         |
| 46 | Manipulation and Optical Detection of Colloidal Functional Plasmonic Nanostructures in<br>Microfluidic Systems. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 102-114.                                                                              | 2.9 | 3         |
| 47 | How medium osmolarity influences dielectrophoretically assisted on-chip electrofusion.<br>Bioelectrochemistry, 2014, 100, 27-35.                                                                                                                                        | 4.6 | 9         |
| 48 | Micro-Fluidic Channel Integration on Thick-SOI LSI Device for Biological Application IEEJ Transactions on Sensors and Micromachines, 2014, 134, 320-325.                                                                                                                | 0.1 | 1         |
| 49 | Micro-organism extraction from biological samples using DEP forces enhanced by osmotic shock. Lab on A Chip, 2013, 13, 901.                                                                                                                                             | 6.0 | 20        |
| 50 | Insertion of Functional Proteins into Bilayer Lipid Membrane usingÂa Cell-Free Expression System.<br>Biophysical Journal, 2013, 104, 548a.                                                                                                                              | 0.5 | 0         |
| 51 | Optical microscopy and spectroscopy of analyte-sensitive functionalized gold nanoparticles in microfluidic systems. Proceedings of SPIE, 2013, , .                                                                                                                      | 0.8 | 7         |
| 52 | Optimization of dielectrophoretic separation and concentration of pathogens in complex biological samples. Proceedings of SPIE, 2013, , .                                                                                                                               | 0.8 | 0         |
| 53 | Microarray of non-connected gold pads used as high density electric traps for parallelized pairing and fusion of cells. Biomicrofluidics, 2013, 7, 44101.                                                                                                               | 2.4 | 10        |
| 54 | Study of the transmembrane potential distribution of cell pairs in a microfluidic device using polymer obstacles to initiate electrofusion. EPJ Applied Physics, 2013, 62, 11202.                                                                                       | 0.7 | 2         |

| #  | Article                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Activity monitoring of functional OprM using a biomimetic microfluidic device. Analyst, The, 2012, 137, 847.                                                                                                                                                        | 3.5  | 13        |
| 56 | Highâ€resolution analyses of cell fusion dynamics in a biochip. Electrophoresis, 2012, 33, 2508-2515.                                                                                                                                                               | 2.4  | 3         |
| 57 | A microfluidic device with removable packaging for the real time visualisation of intracellular effects of nanosecond electrical pulses on adherent cells. Lab on A Chip, 2012, 12, 4709.                                                                           | 6.0  | 16        |
| 58 | Solvatochromic dissociation of non-covalent fluorescent organic nanoparticles upon cell internalization. Physical Chemistry Chemical Physics, 2011, 13, 13268.                                                                                                      | 2.8  | 31        |
| 59 | Design and realization of a microfluidic device devoted to the application of ultra-short pulses of electrical field to living cells. Sensors and Actuators B: Chemical, 2011, 160, 1573-1580.                                                                      | 7.8  | 21        |
| 60 | A microfluidic biochip for the nanoporation of living cells. Biosensors and Bioelectronics, 2011, 26, 4649-4655.                                                                                                                                                    | 10.1 | 38        |
| 61 | A high density microfluidic device for cell pairing and electrofusion. Procedia Engineering, 2010, 5, 49-52.                                                                                                                                                        | 1.2  | 2         |
| 62 | A rupture detection algorithm for the DNA translocation detection though biological nanopore.<br>Procedia Engineering, 2010, 5, 796-799.                                                                                                                            | 1.2  | 3         |
| 63 | A technique to design complex 3D lab on a chip involving multilayered fluidics, embedded thick<br>electrodes and hard packaging—application to dielectrophoresis and electroporation of cells.<br>Journal of Micromechanics and Microengineering, 2010, 20, 047001. | 2.6  | 10        |
| 64 | Nanomanipulation of Living Cells on a Chip Using Electric Field: General Concepts and Microdevices. ,<br>2010, , .                                                                                                                                                  |      | 1         |
| 65 | Electro-optical imaging microscopy of dye doped lipid membrane. , 2009, , .                                                                                                                                                                                         |      | Ο         |
| 66 | Multichannel Simultaneous Measurements of Single-Molecule Translocation in α-Hemolysin Nanopore<br>Array. Analytical Chemistry, 2009, 81, 9866-9870.                                                                                                                | 6.5  | 103       |
| 67 | Ninety-six-well planar lipid bilayer chip for ion channel recording Fabricated by hybrid stereolithography. Biomedical Microdevices, 2009, 11, 17-22.                                                                                                               | 2.8  | 40        |
| 68 | Electro-Optical Imaging Microscopy of Dye-Doped Artificial Lipidic Membranes. Biophysical Journal, 2009, 97, 2913-2921.                                                                                                                                             | 0.5  | 13        |
| 69 | Electro-Optical Imaging Microscopy of Dye Doped Lipid Bilayer. , 2009, , .                                                                                                                                                                                          |      | 0         |
| 70 | Assembly of CdSe/ZnS nanocrystals on microwires and nanowires for temperature sensing. Sensors and Actuators B: Chemical, 2008, 130, 175-180.                                                                                                                       | 7.8  | 3         |
| 71 | Lipid Bilayer Microarray for Parallel Recording of Transmembrane Ion Currents. Analytical Chemistry, 2008, 80, 328-332.                                                                                                                                             | 6.5  | 101       |
| 72 | High-Throughput Single-Cell Electroporation Microchip with Three Dimensional Si Microelectrodes                                                                                                                                                                     |      | 0         |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | A Silicon-Based Single-Cell Electroporation Microchip for Gene Transfer. , 2006, , .                                                                                                                                       |      | 1         |
| 74 | Constraining the connectivity of neuronal networks cultured on microelectrode arrays with<br>microfluidic techniques: A step towards neuron-based functional chips. Biosensors and<br>Bioelectronics, 2006, 21, 1093-1100. | 10.1 | 126       |
| 75 | Study of osteoblastic cells in a microfluidic environment. Biomaterials, 2006, 27, 586-595.                                                                                                                                | 11.4 | 145       |
| 76 | Vacuum casting to manufacture a plastic biochip for highly parallel cell transfection. Measurement<br>Science and Technology, 2006, 17, 3134-3140.                                                                         | 2.6  | 12        |
| 77 | Perfusion culture of mammalian cells in microfluidic environments for tissue engineering applicationsÂ. Houille Blanche, 2006, 92, 56-59.                                                                                  | 0.3  | 0         |
| 78 | Cell Cultures Over Nanoneedle Fields. Nanobiotechnology, 2005, 1, 389-394.                                                                                                                                                 | 1.2  | 3         |
| 79 | Biopuces pour le traitement de cellules vivantes : micromanipulation des cellules par voie électrique<br>ouÂmicrofluidique. Comptes Rendus Physique, 2004, 5, 589-596.                                                     | 0.9  | 5         |
| 80 | Micromanipulation de particules polarisables par diélectrophorèse. Revue Internationale De Génie<br>électrique, 2004, 7, 419-431.                                                                                          | 0.0  | 0         |
| 81 | Positioning living cells on a high-density electrode array by negative dielectrophoresis. Materials<br>Science and Engineering C, 2003, 23, 597-603.                                                                       | 7.3  | 61        |
| 82 | Techniques for patterning and guidance of primary culture neurons on micro-electrode arrays.<br>Sensors and Actuators B: Chemical, 2002, 83, 15-21.                                                                        | 7.8  | 40        |
| 83 | A Method for Micrometer Resolution Patterning of Primary Culture Neurons for SPM Analysis.<br>Journal of Biochemistry, 2001, 130, 367-376.                                                                                 | 1.7  | 24        |
| 84 | Effect of the composition and thermal annealing on the transformation temperatures of sputtered TiNi shape memory alloy thin films. Thin Solid Films, 2001, 401, 52-59.                                                    | 1.8  | 85        |
| 85 | Cell Placement and Neural Guidance Using a Three-Dimensional Microfluidic Array. Japanese Journal of<br>Applied Physics, 2001, 40, 5485-5490.                                                                              | 1.5  | 29        |
| 86 | <title>Near-field imaging of neurotransmitter release and uptake in patterned neuron networks</title> . , 2000, , .                                                                                                        |      | 0         |
| 87 | Living cells captured on a bio-microsystem devoted to DNA injection. Materials Science and Engineering C, 2000, 12, 77-81.                                                                                                 | 7.3  | 19        |
| 88 | Characterization of Sputtered TiNi Shape Memory Alloy Thin Films. Japanese Journal of Applied Physics, 1999, 38, L1547-L1549.                                                                                              | 1.5  | 6         |
| 89 | <title>Shape memory alloys for micromembrane actuation</title> ., 1999, 3825, 63.                                                                                                                                          |      | 0         |
| 90 | COMPARISON OF CONTROL STRATEGIES TO MINIMIZE THE TORQUE RIPPLE OF A SWITCHED RELUCTANCE MACHINE. Electric Power Components and Systems, 1997, 25, 1103-1118.                                                               | 0.1  | 9         |

| #   | Article                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Experimental nonlinear torque control of a permanent-magnet synchronous motor using saliency.<br>IEEE Transactions on Industrial Electronics, 1997, 44, 680-687.             | 7.9 | 69        |
| 92  | Modélisation et commande non linéaire en couple d'une machine à réluctance variable à double<br>saillance. Journal De Physique III, 1996, 6, 55-75.                          | 0.3 | 2         |
| 93  | Optimization of control parameters by Newton's algorithm using sensitivity functions: application to the variable frequency DC-DC converter. , 1994, , .                     |     | 0         |
| 94  | Nonlinear control of a variable frequency DC-DC converter. , 1994, , .                                                                                                       |     | 2         |
| 95  | COMPARISON OF SPEED NONLINEAR CONTROL STRATEGIES FOR THE SYNCHRONOUS SERVOMOTOR. Electric Power Components and Systems, 1993, 21, 151-169.                                   | 0.1 | 36        |
| 96  | Commande non linéaire en vitesse d'un servomoteur synchrone avec calcul de trajectoire et<br>estimation du couple résistant. Journal De Physique III, 1992, 2, 1905-1924.    | 0.3 | 1         |
| 97  | A robust total compensation algorithm for the torque control of a synchronous servomotor.<br>Journal De Physique III, 1992, 2, 129-144.                                      | 0.3 | 3         |
| 98  | Application des commandes non linéaires pour la régulation en vitesse ou en position de la machine<br>synchrone autopilotée. Revue De Physique Appliquée, 1990, 25, 517-526. | 0.4 | 14        |
| 99  | Catching and attaching cells using an array of microholes. , 0, , .                                                                                                          |     | 5         |
| 100 | Design of biochip microelectrode arrays for cell arrangement. , 0, , .                                                                                                       |     | 3         |
| 101 | Surface Engineering of Microfluidic Systems for Cellular Biochips. , 0, , .                                                                                                  |     | 0         |
| 102 | Co-culture of cells in PDMS Microsystem for Sensitized Artificial Skin. , 0, , .                                                                                             |     | 2         |
| 103 | Investigation of Human Hepatoma Cell Line in Microfluidic Devices. , 0, , .                                                                                                  |     | 0         |