
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2398758/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | lon type and valency differentially drive vimentin tetramers into intermediate filaments or higher<br>order assemblies. Soft Matter, 2021, 17, 870-878.                                  | 2.7  | 8         |
| 2  | Post-translational modifications soften vimentin intermediate filaments. Nanoscale, 2021, 13, 380-387.                                                                                   | 5.6  | 24        |
| 3  | Tuning the Mechanical Properties of Poly(Methyl Acrylate) via Surfaceâ€Functionalized<br>Montmorillonite Nanosheets. Macromolecular Materials and Engineering, 2021, 306, 2000595.       | 3.6  | 5         |
| 4  | The Coding and Small Non-coding Hippocampal Synaptic RNAome. Molecular Neurobiology, 2021, 58, 2940-2953.                                                                                | 4.0  | 10        |
| 5  | Structural model of the M7G46 Methyltransferase TrmB in complex with tRNA. RNA Biology, 2021, 18, 2466-2479.                                                                             | 3.1  | 8         |
| 6  | Vimentin intermediate filaments stabilize dynamic microtubules by direct interactions. Nature Communications, 2021, 12, 3799.                                                            | 12.8 | 52        |
| 7  | Multiscale mechanics and temporal evolution of vimentin intermediate filament networks.<br>Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . | 7.1  | 12        |
| 8  | Reflections on COVID-19–Induced Online Teaching in Biophysics Courses. The Biophysicist, 2021, 2, 20-22.                                                                                 | 0.3  | 1         |
| 9  | Exploring early time points of vimentin assembly in flow by fluorescence fluctuation spectroscopy.<br>Lab on A Chip, 2021, 21, 735-745.                                                  | 6.0  | 2         |
| 10 | Combined scanning small-angle X-ray scattering and holography probes multiple length scales in cell nuclei. Journal of Synchrotron Radiation, 2021, 28, 518-529.                         | 2.4  | 1         |
| 11 | Time-resolved MIET measurements of blood platelet spreading and adhesion. Nanoscale, 2020, 12, 21306-21315.                                                                              | 5.6  | 13        |
| 12 | A minimalist model to measure interactions between proteins and synaptic vesicles. Scientific Reports, 2020, 10, 21086.                                                                  | 3.3  | 8         |
| 13 | Tuning intermediate filament mechanics by variation of pH and ion charges. Nanoscale, 2020, 12, 15236-15245.                                                                             | 5.6  | 20        |
| 14 | Vesicle adhesion in the electrostatic strong-coupling regime studied by time-resolved small-angle<br>X-ray scattering. Soft Matter, 2020, 16, 4142-4154.                                 | 2.7  | 11        |
| 15 | Transport and programmed release of nanoscale cargo from cells by using NETosis. Nanoscale, 2020, 12, 9104-9115.                                                                         | 5.6  | 15        |
| 16 | A comparative analysis of the mobility of 45 proteins in the synaptic bouton. EMBO Journal, 2020, 39, e104596.                                                                           | 7.8  | 29        |
| 17 | Large field-of-view scanning small-angle X-ray scattering of mammalian cells. Journal of Synchrotron<br>Radiation, 2020, 27, 1059-1068.                                                  | 2.4  | 1         |
| 18 | Scanning Small-Angle X-ray Scattering and Coherent X-ray Imaging of Cells. Topics in Applied Physics, 2020, , 405-433.                                                                   | 0.8  | 1         |

| #  | Article                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Direct characterization of cytoskeletal reorganization during blood platelet spreading. Progress in<br>Biophysics and Molecular Biology, 2019, 144, 166-176.    | 2.9  | 22        |
| 20 | A beamline-compatible STED microscope for combined visible-light and X-ray studies of biological matter. Journal of Synchrotron Radiation, 2019, 26, 1144-1151. | 2.4  | 1         |
| 21 | Lateral Subunit Coupling Determines Intermediate Filament Mechanics. Physical Review Letters, 2019, 123, 188102.                                                | 7.8  | 27        |
| 22 | Vimentin Intermediate Filaments Undergo Irreversible Conformational Changes during Cyclic Loading.<br>Nano Letters, 2019, 19, 7349-7356.                        | 9.1  | 36        |
| 23 | Human blood platelets contract in perpendicular direction to shear flow. Soft Matter, 2019, 15, 2009-2019.                                                      | 2.7  | 14        |
| 24 | Mutation-induced alterations of intra-filament subunit organization in vimentin filaments revealed by SAXS. Soft Matter, 2019, 15, 1999-2008.                   | 2.7  | 14        |
| 25 | Helical Superstructure of Intermediate Filaments. Physical Review Letters, 2019, 122, 098101.                                                                   | 7.8  | 5         |
| 26 | STXM analysis: Preparing to go live @ 750â€Hz. AIP Conference Proceedings, 2019, , .                                                                            | 0.4  | 1         |
| 27 | Cyclic olefin copolymer as an X-ray compatible material for microfluidic devices. Lab on A Chip, 2018,<br>18, 171-178.                                          | 6.0  | 33        |
| 28 | Scanning Small-Angle-X-Ray Scattering for Imaging Biological Cells. Microscopy and Microanalysis, 2018, 24, 336-339.                                            | 0.4  | 1         |
| 29 | Correlative microscopy approach for biology using X-ray holography, X-ray scanning diffraction and STED microscopy. Nature Communications, 2018, 9, 3641.       | 12.8 | 33        |
| 30 | Dynamics of force generation by spreading platelets. Soft Matter, 2018, 14, 6571-6581.                                                                          | 2.7  | 35        |
| 31 | Effect of ionic strength on the structure and elongational kinetics of vimentin filaments. Soft<br>Matter, 2018, 14, 8445-8454.                                 | 2.7  | 13        |
| 32 | Viscoelastic properties of vimentin originate from nonequilibrium conformational changes. Science<br>Advances, 2018, 4, eaat1161.                               | 10.3 | 52        |
| 33 | Rapid Acquisition of Xâ€Ray Scattering Data from Dropletâ€Encapsulated Protein Systems. ChemPhysChem,<br>2017, 18, 1220-1223.                                   | 2.1  | 14        |
| 34 | Nonlinear Loading-Rate-Dependent Force Response of Individual Vimentin Intermediate Filaments to<br>Applied Strain. Physical Review Letters, 2017, 118, 048101. | 7.8  | 84        |
| 35 | Imaging of Biological Materials and Cells by X-ray Scattering and Diffraction. ACS Nano, 2017, 11, 8542-8559.                                                   | 14.6 | 57        |
| 36 | Election of the German Committee for Research with Synchrotron Radiation (KFS). Synchrotron<br>Radiation News, 2017, 30, 32-32.                                 | 0.8  | 0         |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Competitive Counterion Binding Regulates the Aggregation Onset of Vimentin Intermediate Filaments.<br>Israel Journal of Chemistry, 2016, 56, 614-621.                                                                                 | 2.3  | 17        |
| 38 | The filament forming reactions of vimentin tetramers studied in a serial-inlet microflow device by small angle x-ray scattering. Biomicrofluidics, 2016, 10, 024108.                                                                  | 2.4  | 20        |
| 39 | Topographic Cues Reveal Two Distinct Spreading Mechanisms in Blood Platelets. Scientific Reports, 2016, 6, 22357.                                                                                                                     | 3.3  | 34        |
| 40 | Lateral association and elongation of vimentin intermediate filament proteins: A time-resolved<br>light-scattering study. Proceedings of the National Academy of Sciences of the United States of<br>America, 2016, 113, 11152-11157. | 7.1  | 31        |
| 41 | Emerging Investigators 2016: discovery science meets technology. Lab on A Chip, 2016, 16, 2974-2976.                                                                                                                                  | 6.0  | 0         |
| 42 | Calpain-mediated cleavage of collapsin response mediator protein-2 drives acute axonal degeneration.<br>Scientific Reports, 2016, 6, 37050.                                                                                           | 3.3  | 27        |
| 43 | Following DNA Compaction During the Cell Cycle by X-ray Nanodiffraction. ACS Nano, 2016, 10, 10661-10670.                                                                                                                             | 14.6 | 8         |
| 44 | Impact of the crystallization condition on importin-β conformation. Acta Crystallographica Section D:<br>Structural Biology, 2016, 72, 705-717.                                                                                       | 2.3  | 12        |
| 45 | X-rays Reveal the Internal Structure of Keratin Bundles in Whole Cells. ACS Nano, 2016, 10, 3553-3561.                                                                                                                                | 14.6 | 32        |
| 46 | Contribution of myosin II activity to cell spreading dynamics. Soft Matter, 2016, 12, 500-507.                                                                                                                                        | 2.7  | 5         |
| 47 | Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. Current Opinion in Cell Biology, 2015, 32, 82-91.                                                                      | 5.4  | 134       |
| 48 | Physical properties of cytoplasmic intermediate filaments. Biochimica Et Biophysica Acta - Molecular<br>Cell Research, 2015, 1853, 3053-3064.                                                                                         | 4.1  | 85        |
| 49 | The Structure of Gold-Nanoparticle Networks Cross-Linked by Di- and Multifunctional RAFT Oligomers. Langmuir, 2015, 31, 10573-10582.                                                                                                  | 3.5  | 15        |
| 50 | Assembly of Simple Epithelial Keratin Filaments: Deciphering the Ion Dependence in Filament<br>Organization. Biomacromolecules, 2015, 16, 3313-3321.                                                                                  | 5.4  | 20        |
| 51 | Open channel block of NMDA receptors by diphenhydramine. Neuropharmacology, 2015, 99, 459-470.                                                                                                                                        | 4.1  | 12        |
| 52 | Editorial — Special issue on mechanobiology. Biochimica Et Biophysica Acta - Molecular Cell Research,<br>2015, 1853, 2975-2976.                                                                                                       | 4.1  | 1         |
| 53 | Revealing the Structure of Stereociliary Actin by X-ray Nanoimaging. ACS Nano, 2014, 8, 12228-12237.                                                                                                                                  | 14.6 | 19        |
| 54 | Mechanics of Individual Keratin Bundles in Living Cells. Biophysical Journal, 2014, 107, 2693-2699.                                                                                                                                   | 0.5  | 38        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Direct Observation of Subunit Exchange along Mature Vimentin Intermediate Filaments. Biophysical<br>Journal, 2014, 107, 2923-2931.                                                                                    | 0.5 | 49        |
| 56 | Scanning X-Ray Nanodiffraction on Living Eukaryotic Cells in Microfluidic Environments. Physical Review Letters, 2014, 112, .                                                                                         | 7.8 | 71        |
| 57 | Tracking reactions in microflow. Microfluidics and Nanofluidics, 2014, 16, 39-45.                                                                                                                                     | 2.2 | 10        |
| 58 | Micro-topography influences blood platelet spreading. Soft Matter, 2014, 10, 2365-2371.                                                                                                                               | 2.7 | 11        |
| 59 | Dynamics of counterion-induced attraction between vimentin filaments followed in microfluidic drops. Lab on A Chip, 2014, 14, 2681-2687.                                                                              | 6.0 | 34        |
| 60 | Impact of ion valency on the assembly of vimentin studied by quantitative small angle X-ray scattering.<br>Soft Matter, 2014, 10, 2059-2068.                                                                          | 2.7 | 26        |
| 61 | Microfluidic devices for X-ray studies on hydrated cells. Lab on A Chip, 2013, 13, 212-215.                                                                                                                           | 6.0 | 63        |
| 62 | Influence of microfluidic shear on keratin networks in living cells. New Journal of Physics, 2013, 15, 045025.                                                                                                        | 2.9 | 9         |
| 63 | Microfluidics—from fundamental research to industrial applications. Journal Physics D: Applied<br>Physics, 2013, 46, 110301.                                                                                          | 2.8 | 3         |
| 64 | New Developments in Hard X-ray Fluorescence Microscopy for In-situ Investigations of Trace Element<br>Distributions in Aqueous Systems of Soil Colloids. Journal of Physics: Conference Series, 2013, 463,<br>012005. | 0.4 | 2         |
| 65 | X-ray nano-diffraction on cytoskeletal networks. New Journal of Physics, 2012, 14, 085013.                                                                                                                            | 2.9 | 43        |
| 66 | Vimentin networks at tunable ion-concentration in microfluidic drops. Biomicrofluidics, 2012, 6, 022009.                                                                                                              | 2.4 | 27        |
| 67 | Intermediate Filaments in Small Configuration Spaces. Physical Review Letters, 2012, 108, 088101.                                                                                                                     | 7.8 | 62        |
| 68 | X-RAY STUDIES OF BIOLOGICAL MATTER IN MICROFLUIDIC ENVIRONMENTS. Modern Physics Letters B, 2012, 26, 1230018.                                                                                                         | 1.9 | 37        |
| 69 | Mobility Gradient Induces Cross-Streamline Migration of Semiflexible Polymers. ACS Macro Letters, 2012, 1, 541-545.                                                                                                   | 4.8 | 44        |
| 70 | Promethazine inhibits NMDA-induced currents – New pharmacological aspects of an old drug.<br>Neuropharmacology, 2012, 63, 280-291.                                                                                    | 4.1 | 15        |
| 71 | Force field evolution during human blood platelet activation. Journal of Cell Science, 2012, 125, 3914-20.                                                                                                            | 2.0 | 55        |
| 72 | Tunable Silk: Using Microfluidics to Fabricate Silk Fibers with Controllable Properties.<br>Biomacromolecules, 2011, 12, 1504-1511.                                                                                   | 5.4 | 154       |

| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Dynamics of intermediate filament assembly followed in micro-flow by small angle X-ray scattering.<br>Lab on A Chip, 2011, 11, 708.                                      | 6.0 | 70        |
| 74 | Intranasal Application of Xenon Reduces Opioid Requirement and Postoperative Pain in Patients<br>Undergoing Major Abdominal Surgery. Anesthesiology, 2011, 115, 398-407. | 2.5 | 30        |
| 75 | Anucleate platelets generate progeny. Blood, 2010, 115, 3801-3809.                                                                                                       | 1.4 | 164       |
| 76 | Orientation of biomolecular assemblies in a microfluidic jet. New Journal of Physics, 2010, 12, 043056.                                                                  | 2.9 | 12        |
| 77 | Xenon-induced changes in CNS sensitization to pain. NeuroImage, 2010, 49, 720-730.                                                                                       | 4.2 | 26        |
| 78 | Nanomechanics of vimentin intermediate filament networks. Soft Matter, 2010, 6, 1910.                                                                                    | 2.7 | 28        |
| 79 | An in vitro model system for cytoskeletal confinement. Cytoskeleton, 2009, 66, 771-776.                                                                                  | 4.4 | 19        |
| 80 | Influence of Internal Capsid Pressure on Viral Infection by Phage λ. Biophysical Journal, 2009, 97,<br>1525-1529.                                                        | 0.5 | 34        |
| 81 | Dropspots: a picoliter array in a microfluidic device. Lab on A Chip, 2009, 9, 44-49.                                                                                    | 6.0 | 229       |
| 82 | Internal Capsid-Pressure Dependence of Viral Infection by Phage Lambda. Biophysical Journal, 2009, 96,<br>421a.                                                          | 0.5 | 0         |
| 83 | Droplet-Based Microfluidic Platforms for the Encapsulation and Screening of Mammalian Cells and<br>Multicellular Organisms. Chemistry and Biology, 2008, 15, 427-437.    | 6.0 | 620       |
| 84 | Characterization of single semiflexible filaments under geometric constraints. European Physical<br>Journal E, 2008, 25, 439-449.                                        | 1.6 | 32        |
| 85 | Drop-based microfluidic devices for encapsulation of single cells. Lab on A Chip, 2008, 8, 1110.                                                                         | 6.0 | 470       |
| 86 | Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab on A Chip, 2008, 8, 1632.                                                                             | 6.0 | 589       |
| 87 | Etomidate reduces glutamate uptake in rat cultured glial cells: involvement of PKA. British Journal of<br>Pharmacology, 2008, 155, 925-933.                              | 5.4 | 18        |
| 88 | Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab on A Chip, 2008, 8, 1262.                                                                | 6.0 | 444       |
| 89 | An In Situ Study of Collagen Self-Assembly Processes. Biomacromolecules, 2008, 9, 199-207.                                                                               | 5.4 | 56        |
| 90 | FLUCTUATIONS OF SINGLE CONFINED ACTIN FILAMENTS. Biophysical Reviews and Letters, 2007, 02, 155-166.                                                                     | 0.8 | 18        |

| #  | Article                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91 | Highly Packed and Oriented DNA Mesophases Identified Using in Situ Microfluidic X-ray<br>Microdiffraction. Biomacromolecules, 2007, 8, 2167-2172.                    | 5.4  | 48        |
| 92 | Visualization of Flow-Aligned Type I Collagen Self-Assembly in Tunable pH Gradients. Langmuir, 2007, 23, 357-359.                                                    | 3.5  | 54        |
| 93 | Rapid increase of glial glutamate uptake via blockade of the protein kinase A pathway. Glia, 2007, 55,<br>1699-1707.                                                 | 4.9  | 32        |
| 94 | Rapid Prototyping of X-Ray Microdiffraction Compatible Continuous Microflow Foils. Small, 2007, 3, 96-100.                                                           | 10.0 | 30        |
| 95 | Evolution of DNA compaction in microchannels. Journal of Physics Condensed Matter, 2006, 18, S639-S652.                                                              | 1.8  | 24        |
| 96 | Microfluidics of soft matter investigated by small-angle X-ray scattering. Journal of Synchrotron Radiation, 2005, 12, 745-750.                                      | 2.4  | 61        |
| 97 | Brownian motion of actin filaments in confining microchannels. Journal of Physics Condensed Matter, 2005, 17, S4091-S4104.                                           | 1.8  | 52        |
| 98 | Microaligned collagen matrices by hydrodynamic focusing: controlling the pH-induced self-assembly.<br>Materials Research Society Symposia Proceedings, 2005, 898, 1. | 0.1  | 0         |