Yibo Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2398708/publications.pdf

Version: 2024-02-01

7	194	7	7
papers	citations	h-index	g-index
7	7	7	223
all docs	docs citations	times ranked	citing authors

#	ARTICLE	IF	CITATIONS
1	Novel Carbonothioate-Based Colorimetric and Fluorescent Probe for Selective Detection of Mercury lons. Industrial & Engineering Chemistry Research, 2016, 55, 8713-8718.	3.7	58
2	Catalytic oxidation of soot on mesoporous ceria-based mixed oxides with cetyltrimethyl ammonium bromide (CTAB)-assisted synthesis. Journal of Colloid and Interface Science, 2017, 508, 1-13.	9.4	34
3	Pd nanoparticles supported on CeO2 nanospheres as efficient catalysts for dehydrogenation from additive-free formic acid at low temperature. Fuel, 2021, 302, 121142.	6.4	27
4	Effect of surface and bulk palladium doping on the catalytic activity of La2Sn2O7 pyrochlore oxides for diesel soot oxidation. Journal of Materials Science, 2019, 54, 4495-4510.	3.7	24
5	Catalytic oxidation of CO on mesoporous codoped ceria catalysts: Insights into correlation of physicochemical property and catalytic activity. Journal of Rare Earths, 2019, 37, 961-969.	4.8	22
6	Enhanced catalytic performance of cobalt and iron co-doped ceria catalysts for soot combustion. Journal of Materials Science, 2020, 55, 283-297.	3.7	18
7	Amorphous manganese oxide as highly active catalyst for soot oxidation. Environmental Science and Pollution Research, 2020, 27, 13488-13500.	5.3	11