Anthony Kicic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2398696/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exacerbation of chronic cigarette-smoke induced lung disease by rhinovirus in mice. Respiratory Physiology and Neurobiology, 2022, 298, 103846.	0.7	1
2	Primary Nasal Epithelial Cells as a Surrogate Cell Culture Model for Type-II Alveolar Cells to Study ABCA-3 Deficiency. Frontiers in Medicine, 2022, 9, 827416.	1.2	0
3	Investigating the Implications of CFTR Exon Skipping Using a Cftr Exon 9 Deleted Mouse Model. Frontiers in Pharmacology, 2022, 13, 868863.	1.6	1
4	<i>Pseudomonas aeruginosa</i> modulates neutrophil granule exocytosis in an <i>in vitro</i> model of airway infection. Immunology and Cell Biology, 2022, 100, 352-370.	1.0	7
5	SLC6A14 Impacts Cystic Fibrosis Lung Disease Severity via mTOR and Epithelial Repair Modulation. Frontiers in Molecular Biosciences, 2022, 9, 850261.	1.6	3
6	Toxicity of different biodiesel exhausts in primary human airway epithelial cells grown at air-liquid interface. Science of the Total Environment, 2022, 832, 155016.	3.9	8
7	Al-Driven Cell Tracking to Enable High-Throughput Drug Screening Targeting Airway Epithelial Repair for Children with Asthma. Journal of Personalized Medicine, 2022, 12, 809.	1.1	1
8	WS12.02 BAFF and other soluble factors in airway samples are linked with pathological cystic fibrosis neutrophil phenotype in early childhood. Journal of Cystic Fibrosis, 2022, 21, S23.	0.3	0
9	Ivacaftor or lumacaftor/ivacaftor treatment does not alter the core CF airway epithelial gene response to rhinovirus. Journal of Cystic Fibrosis, 2021, 20, 97-105.	0.3	6
10	Intrauterine growth restriction predisposes to airway inflammation without disruption of epithelial integrity in postnatal male mice. Journal of Developmental Origins of Health and Disease, 2021, 12, 496-504.	0.7	6
11	<scp>ACE2</scp> expression is elevated in airway epithelial cells from older and male healthy individuals but reduced in asthma. Respirology, 2021, 26, 442-451.	1.3	59
12	The Role of Subinhibitory Concentrations of Daptomycin and Tigecycline in Modulating Virulence in Staphylococcus aureus. Antibiotics, 2021, 10, 39.	1.5	7
13	Changes in airway inflammation with pseudomonas eradication in early cystic fibrosis. Journal of Cystic Fibrosis, 2021, 20, 941-948.	0.3	8
14	Pseudomonas aeruginosa Resistance to Bacteriophages and Its Prevention by Strategic Therapeutic Cocktail Formulation. Antibiotics, 2021, 10, 145.	1.5	14
15	Nasal airway epithelial repair after very preterm birth. ERJ Open Research, 2021, 7, 00913-2020.	1.1	3
16	Previous Influenza Infection Exacerbates Allergen Specific Response and Impairs Airway Barrier Integrity in Pre-Sensitized Mice. International Journal of Molecular Sciences, 2021, 22, 8790.	1.8	5
17	Cystic Fibrosis Clinical Isolates of Aspergillus fumigatus Induce Similar Muco-inflammatory Responses in Primary Airway Epithelial Cells. Pathogens, 2021, 10, 1020.	1.2	2
18	Phage Therapy for Multi-Drug Resistant Respiratory Tract Infections. Viruses, 2021, 13, 1809.	1.5	15

#	Article	IF	CITATIONS
19	Fuel feedstock determines biodiesel exhaust toxicity in a human airway epithelial cell exposure model. Journal of Hazardous Materials, 2021, 420, 126637.	6.5	8
20	In Vitro primary human airway epithelial whole exhaust exposure. MethodsX, 2021, 8, 101561.	0.7	3
21	Development and validation of a miniaturized bacteriophage host range screening assay against antibiotic resistant Pseudomonas aeruginosa. Journal of Microbiological Methods, 2021, 190, 106346.	0.7	3
22	184: Regional transcriptional signatures identified in lung allograft recipients. Journal of Cystic Fibrosis, 2021, 20, S90-S91.	0.3	0
23	642: SLC6A14 is associated with lung function in patients with cystic fibrosis, regulates epithelial repair and mTOR signaling in bronchial epithelial cells. Journal of Cystic Fibrosis, 2021, 20, S305.	0.3	0
24	436: Effects of rhinovirus on airway-associated mucins in young children with cystic fibrosis. Journal of Cystic Fibrosis, 2021, 20, S205.	0.3	0
25	377: Airway macrophages in early CF lung disease show signs of immune paralysis. Journal of Cystic Fibrosis, 2021, 20, S178-S179.	0.3	Ο
26	Viral Induced Effects on a Vulnerable Epithelium; Lessons Learned From Paediatric Asthma and Eosinophilic Oesophagitis. Frontiers in Immunology, 2021, 12, 773600.	2.2	5
27	Dysregulated Notch Signaling in the Airway Epithelium of Children with Wheeze. Journal of Personalized Medicine, 2021, 11, 1323.	1.1	4
28	Blocking Notch3 Signaling Abolishes MUC5AC Production in Airway Epithelial Cells from Individuals with Asthma. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 513-523.	1.4	36
29	Rhinovirus Infection Drives Complex Host Airway Molecular Responses in Children With Cystic Fibrosis. Frontiers in Immunology, 2020, 11, 1327.	2.2	14
30	Update on SLC6A14 in lung and gastrointestinal physiology and physiopathology: focus on cystic fibrosis. Cellular and Molecular Life Sciences, 2020, 77, 3311-3323.	2.4	18
31	Rhinovirus Infection Is Associated With Airway Epithelial Cell Necrosis and Inflammation via Interleukin-1 in Young Children With Cystic Fibrosis. Frontiers in Immunology, 2020, 11, 596.	2.2	16
32	<copd-related airway="" epithelium="" intracellular="" modification="" of<br="" permits="" residence="" the="" to="">Nontypeable Haemophilus influenzae and May Be Potentiated by Macrolide Arrest of Autophagy. International Journal of COPD, 2020, Volume 15, 1253-1260.</copd-related>	0.9	3
33	Azithromycin Partially Mitigates Dysregulated Repair of Lung Allograft Small Airway Epithelium. Transplantation, 2020, 104, 1166-1176.	0.5	8
34	Assessing the unified airway hypothesis in children via transcriptional profiling of the airway epithelium. Journal of Allergy and Clinical Immunology, 2020, 145, 1562-1573.	1.5	35
35	Epithelial Mesenchymal Transition in Respiratory Disease. Chest, 2020, 157, 1591-1596.	0.4	18
36	Progress in Model Systems of Cystic Fibrosis Mucosal Inflammation to Understand Aberrant Neutrophil Activity. Frontiers in Immunology, 2020, 11, 595.	2.2	12

#	Article	IF	CITATIONS
37	Overcoming Challenges to Make Bacteriophage Therapy Standard Clinical Treatment Practice for Cystic Fibrosis. Frontiers in Microbiology, 2020, 11, 593988.	1.5	13
38	Aberrant cell migration contributes to defective airway epithelial repair in childhood wheeze. JCI Insight, 2020, 5, .	2.3	19
39	An adapted novel flow cytometry methodology to delineate types of cell death in airway epithelial cells. Journal of Biological Methods, 2020, 7, e139.	1.0	1
40	Using integrated omics to assess the effects of rhinovirus infection in children with Cystic Fibrosis (CF). , 2020, , .		0
41	Late Breaking Abstract - ACE2 expression in lower airway epithelial cells is increased with age and in males, but is less in asthma. , 2020, , .		Ο
42	Rescue of CFTR function impaired by mutations in exon 15. , 2020, , .		0
43	Ground zero—the airway epithelium. , 2019, , 61-98.		5
44	The Contribution of Geogenic Particulate Matter to Lung Disease in Indigenous Children. International Journal of Environmental Research and Public Health, 2019, 16, 2636.	1.2	5
45	Soy Biodiesel Exhaust is More Toxic than Mineral Diesel Exhaust in Primary Human Airway Epithelial Cells. Environmental Science & Technology, 2019, 53, 11437-11446.	4.6	11
46	Preterm birth: Born too soon for the developing airway epithelium?. Paediatric Respiratory Reviews, 2019, 31, 82-88.	1.2	9
47	FIGHTING PSEUDOMONAS AERUGINOSA AND NONTYPEABLE HAEMOPHILUS INFLUENZAE BIOFILMS WITH HOST DEFENCE PEPTIDE AS A NOVEL STEP FORWARD IN THE TREATMENT OF CHRONIC LUNG INFECTIONS. Chest, 2019, 155, 73A.	0.4	0
48	Azithromycin reduces airway inflammation induced by human rhinovirus in lung allograft recipients. Respirology, 2019, 24, 1212-1219.	1.3	7
49	Editorial: Emerging Therapeutic Approaches for Cystic Fibrosis. Frontiers in Pharmacology, 2019, 10, 1440.	1.6	6
50	Elastase Exocytosis by Airway Neutrophils Is Associated with Early Lung Damage in Children with Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 873-881.	2.5	68
51	Assessing airway repair capacity in very preterm infants. , 2019, , .		Ο
52	Comparative toxicity of various biodiesel exhaust exposures compared with diesel. , 2019, , .		0
53	Persistent activation of interlinked type 2 airway epithelial gene networks in sputum-derived cells from aeroallergen-sensitized symptomatic asthmatics. Scientific Reports, 2018, 8, 1511.	1.6	18
54	Effects of human rhinovirus on epithelial barrier integrity and function in children with asthma. Clinical and Experimental Allergy, 2018, 48, 513-524.	1.4	63

#	Article	IF	CITATIONS
55	Persistent induction of goblet cell differentiation in the airways: Therapeutic approaches. , 2018, 185, 155-169.		24
56	Visualisation of Multiple Tight Junctional Complexes in Human Airway Epithelial Cells. Biological Procedures Online, 2018, 20, 3.	1.4	27
57	Elucidating the Interaction of CF Airway Epithelial Cells and Rhinovirus: Using the Host-Pathogen Relationship to Identify Future Therapeutic Strategies. Frontiers in Pharmacology, 2018, 9, 1270.	1.6	3
58	Human Primary Epithelial Cell Models: Promising Tools in the Era of Cystic Fibrosis Personalized Medicine. Frontiers in Pharmacology, 2018, 9, 1429.	1.6	64
59	Use of a Primary Epithelial Cell Screening Tool to Investigate Phage Therapy in Cystic Fibrosis. Frontiers in Pharmacology, 2018, 9, 1330.	1.6	24
60	Accumulation mode particles and LPS exposure induce TLR-4 dependent and independent inflammatory responses in the lung. Respiratory Research, 2018, 19, 15.	1.4	22
61	The potential of antisense oligonucleotide therapies for inherited childhood lung diseases. Molecular and Cellular Pediatrics, 2018, 5, 3.	1.0	21
62	Interleukin-1 is associated with inflammation and structural lung disease in young children with cystic fibrosis. Journal of Cystic Fibrosis, 2018, 17, 715-722.	0.3	47
63	Assessing polymicrobial interactions in a 3D primary airway epithelial cell model. , 2018, , .		1
64	Assessment of p.Phe508del-CFTR functional restoration in pediatric primary cystic fibrosis airway epithelial cells. PLoS ONE, 2018, 13, e0191618.	1.1	3
65	Hypoxia and sterile inflammation in cystic fibrosis airways: mechanisms and potential therapies. European Respiratory Journal, 2017, 49, 1600903.	3.1	90
66	Pulmonary microRNA profiles identify involvement of Creb1 and Sec14l3 in bronchial epithelial changes in allergic asthma. Scientific Reports, 2017, 7, 46026.	1.6	29
67	The potential of phage therapy in cystic fibrosis: Essential human-bacterial-phage interactions and delivery considerations for use in Pseudomonas aeruginosa-infected airways. Journal of Cystic Fibrosis, 2017, 16, 663-670.	0.3	52
68	Vitamin D supplementation of initially vitamin D-deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity. Physiological Reports, 2017, 5, e13371.	0.7	27
69	The AREST CF experience in biobanking — More than just tissues, tubes and time. Journal of Cystic Fibrosis, 2017, 16, 622-627.	0.3	7
70	Airway surface liquid pH is not acidic in children with cystic fibrosis. Nature Communications, 2017, 8, 1409.	5.8	84
71	Conditionally reprogrammed primary airway epithelial cells maintain morphology, lineage and disease specific functional characteristics. Scientific Reports, 2017, 7, 17971.	1.6	77
72	Comment on "Long-Term Effects of Diesel Exhaust Particles on Airway Inflammation and Remodeling in a Mouse Model" by Kim et al Allergy, Asthma and Immunology Research, 2017, 9, 185.	1.1	1

#	Article	IF	CITATIONS
73	A transcriptomic comparison between nasal and bronchial airway epithelia from children. , 2017, , .		ο
74	Impaired airway epithelial cell responses from children with asthma to rhinoviral infection. Clinical and Experimental Allergy, 2016, 46, 1441-1455.	1.4	59
75	Early life rhinovirus infection exacerbates house-dust-mite induced lung disease more severely in female mice . Experimental Lung Research, 2016, 42, 24-36.	0.5	5
76	The genetic and epigenetic landscapes of the epithelium in asthma. Respiratory Research, 2016, 17, 119.	1.4	72
77	Of Pigs, Mice, and Men: Understanding Early Triggers of Cystic Fibrosis Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 784-785.	2.5	2
78	Effect of human rhinovirus infection on airway epithelium tight junction protein disassembly and transepithelial permeability. Experimental Lung Research, 2016, 42, 380-395.	0.5	26
79	Biodiesel exhaust–induced cytotoxicity and proinflammatory mediator production in human airway epithelial cells. Environmental Toxicology, 2016, 31, 44-57.	2.1	30
80	Airway epithelial repair in health and disease: Orchestrator or simply a player?. Respirology, 2016, 21, 438-448.	1.3	24
81	Identification of Epithelial Phospholipase A ₂ Receptor 1 as a Potential Target in Asthma. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 825-836.	1.4	28
82	Identification of genes differentially regulated by vitamin D deficiency that alter lung pathophysiology and inflammation in allergic airways disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L653-L663.	1.3	10
83	Reduced transforming growth factor β1 (TGFâ€Î²1) in the repair of airway epithelial cells of children with asthma. Respirology, 2016, 21, 1219-1226.	1.3	14
84	Pressurised metered dose inhaler-spacer technique in young children improves with video instruction. European Journal of Pediatrics, 2016, 175, 1007-1012.	1.3	13
85	Alpha-1 Antitrypsin Mitigates the Inhibition of Airway Epithelial Cell Repair by Neutrophil Elastase. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 341-349.	1.4	19
86	Abortive replication and reactivation <i>in vitro</i> respiratory syncytial virus (RSV) infection in palivizumab-treated HeLa cells. , 2016, , .		0
87	LSC Abstract $\hat{a} \in ``$ miR-17 and -21 in intercellular communication via exosomes in allergic airway inflammation. , 2016, , .		Ο
88	Biodiesel exhaust: The need for a systematic approach to health effects research. Respirology, 2015, 20, 1034-1045.	1.3	25
89	Matrix metalloproteinase activation by free neutrophil elastase contributes to bronchiectasis progression in early cystic fibrosis. European Respiratory Journal, 2015, 46, 384-394.	3.1	93
90	Disruption of β-catenin/CBP signaling inhibits human airway epithelial–mesenchymal transition and repair. International Journal of Biochemistry and Cell Biology, 2015, 68, 59-69.	1.2	37

#	Article	IF	CITATIONS
91	Productive Infection of Human Embryonic Stem Cell-Derived NKX2.1+ Respiratory Progenitors With Human Rhinovirus. Stem Cells Translational Medicine, 2015, 4, 603-614.	1.6	2
92	Rhinovirus Exacerbates House-Dust-Mite Induced Lung Disease in Adult Mice. PLoS ONE, 2014, 9, e92163.	1.1	25
93	Route of exposure alters inflammation and lung function responses to diesel exhaust. Inhalation Toxicology, 2014, 26, 409-418.	0.8	18
94	Determinants of culture success in an airway epithelium sampling program of young children with cystic fibrosis. Experimental Lung Research, 2014, 40, 447-459.	0.5	12
95	Epithelial Injury and Dysregulated Repair in Small and Large Airways of Lung Transplant Patients is Ameliorated by Azithromycin. Journal of Heart and Lung Transplantation, 2014, 33, S106.	0.3	1
96	House Dust Mite Induced Lung Inflammation Does Not Alter Circulating Vitamin D Levels. PLoS ONE, 2014, 9, e112589.	1.1	4
97	Transcription Factor p63 Regulates Key Genes and Wound Repair in Human Airway Epithelial Basal Cells. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 978-988.	1.4	62
98	Small macrophages are present in early childhood respiratory disease. Journal of Cystic Fibrosis, 2012, 11, 201-208.	0.3	15
99	Regional Differences in Susceptibiity of Bronchial Epithelium to Mesenchymal Transition and Inhibition by the Macrolide Antibiotic Azithromycin. PLoS ONE, 2012, 7, e52309.	1.1	19
100	Suppression of adrenomedullin contributes to vascular leakage and altered epithelial repair during asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67, 998-1006.	2.7	12
101	DNA Methylation Profiles of Airway Epithelial Cells and PBMCs from Healthy, Atopic and Asthmatic Children. PLoS ONE, 2012, 7, e44213.	1.1	101
102	The airway epithelium is a direct source of matrix degrading enzymes in bronchiolitis obliterans syndrome. Journal of Heart and Lung Transplantation, 2011, 30, 1175-1185.	0.3	22
103	Bronchial brushings for investigating airway inflammation and remodelling. Respirology, 2011, 16, 725-737.	1.3	16
104	Innate Inflammatory Responses of Pediatric Cystic Fibrosis Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 761-767.	1.4	89
105	Dysregulated Inflammatory And Apoptotic Responses To Human Rhinovirus In Primary Airway Epithelial Cells From Young Patients With Cystic Fibrosis. , 2010, , .		2
106	Identifying peroxidases and their oxidants in the early pathology of cystic fibrosis. Free Radical Biology and Medicine, 2010, 49, 1354-1360.	1.3	86
107	Decreased Fibronectin Production Significantly Contributes to Dysregulated Repair of Asthmatic Epithelium. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 889-898.	2.5	132
108	341: Explaining the Bronchiolitis Obliterans Syndrome (BOS) Phenotype – Epithelial-Mesenchymal Transition (EMT) Occurs More Readily in Small Airway Epithelium. Journal of Heart and Lung Transplantation, 2010, 29, S114-S115.	0.3	2

#	Article	IF	CITATIONS
109	Efficient Restoration of dF508 CFTR Function in Primary Cystic Fibrosis Airway Epithelial Cells (AEC) , 2009, , .		0
110	Induction of Epithelial–Mesenchymal Transition in Primary Airway Epithelial Cells from Patients with Asthma by Transforming Growth Factor-β1. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 122-133.	2.5	336
111	Posttransplant Bronchiolitis Obliterans Syndrome Is Associated with Bronchial Epithelial to Mesenchymal Transition. American Journal of Transplantation, 2009, 9, 727-733.	2.6	70
112	521: Epithelial Mesenchymal Transition (EMT) in Bronchiolitis Obliterans Syndrome (BOS) Is Not Restricted to Small Airways. Journal of Heart and Lung Transplantation, 2009, 28, S246-S247.	0.3	0
113	523: Cells of Epithelial Lineage Are Detectable in Peripheral Blood and Are Increased in Lung Transplantation. Journal of Heart and Lung Transplantation, 2009, 28, S247-S248.	0.3	1
114	Cells of Epithelial Lineage Are Present in Blood, Engraft the Bronchial Epithelium, and Are Increased in Human Lung Transplantation. Journal of Heart and Lung Transplantation, 2009, 28, 550-557.	0.3	7
115	Successful establishment of primary small airway cell cultures in human lung transplantation. Respiratory Research, 2009, 10, 99.	1.4	18
116	DNA Methylation Profiles of Asthmatic Airway Epithelial Cells , 2009, , .		0
117	Epithelial-Mesenchymal Transition Occurs in Undifferentiated Basal Airway Epithelial Cells Derived from Normal and Asthmatic Subjects , 2009, , .		1
118	Characterization of Side Population Cells from Human Airway Epithelium. Stem Cells, 2008, 26, 2576-2585.	1.4	121
119	Dysregulated repair in asthmatic paediatric airway epithelial cells: the role of plasminogen activator inhibitorâ€1. Clinical and Experimental Allergy, 2008, 38, 1901-1910.	1.4	82
120	326: Circulating Stem Cells Engraft the Bronchial Epithelium in Humans after Lung Transplantation. Journal of Heart and Lung Transplantation, 2008, 27, S178.	0.3	0
121	Selection of housekeeping genes for real-time PCR in atopic human bronchial epithelial cells. European Respiratory Journal, 2008, 32, 755-762.	3.1	64
122	Comparison of techniques for obtaining lower airway epithelial cells from children. European Respiratory Journal, 2008, 32, 763-768.	3.1	29
123	SELECTION OF HOUSEKEEPING GENES FOR REAL-TIME QUANTITATIVE PCR IN NORMAL AND ATOPIC HUMAN BRONCHIAL EPITHELIAL CELLS. Chest, 2007, 132, 601A.	0.4	0
124	Limbal stem cells: the search for a marker. Clinical and Experimental Ophthalmology, 2006, 34, 64-73.	1.3	105
125	Intrinsic Biochemical and Functional Differences in Bronchial Epithelial Cells of Children with Asthma. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 1110-1118.	2.5	175
126	Inducible NO synthase expression is low in airway epithelium from young children with cystic fibrosis. Thorax, 2006, 61, 514-520.	2.7	44

#	Article	IF	CITATIONS
127	Using Stem Cells to Repair the Degenerate Retina. , 2006, 572, 381-388.		0
128	Are Stem Cell Characteristics Altered by Disease State?. Stem Cells and Development, 2005, 14, 15-28.	1.1	4
129	The use of non-bronchoscopic brushings to study the paediatric airway. Respiratory Research, 2005, 6, 53.	1.4	59
130	Differentiation of Marrow Stromal Cells into Photoreceptors in the Rat Eye. Journal of Neuroscience, 2003, 23, 7742-7749.	1.7	205
131	Marrow Stromal Cells (MSC): A species Comparison. Advances in Experimental Medicine and Biology, 2003, 533, 407-414.	0.8	5
132	Desferrithiocin is a more potent antineoplastic agent than desferrioxamine. British Journal of Pharmacology, 2002, 135, 1393-1402.	2.7	24
133	Effect of iron chelators on proliferation and iron uptake in hepatoma cells. Cancer, 2001, 92, 3093-3110.	2.0	63
134	The potential of marrow stromal cells in stem cell therapy. Eye, 2001, 15, 695-707.	1.1	6
135	The desferrithiocin (DFT) class of iron chelators: potential as antineoplastic agents. Anti-cancer Drug Design, 2001, 16, 195-207.	0.3	4