## Angela Wilks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2398590/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Crystal structure of human heme oxygenase-1. Nature Structural Biology, 1999, 6, 860-867.                                                                                                                | 9.7 | 282       |
| 2  | Homologues of Neisserial Heme Oxygenase in Gram-Negative Bacteria: Degradation of Heme by the<br>Product of the pigA Gene of Pseudomonas aeruginosa. Journal of Bacteriology, 2001, 183, 6394-6403.      | 1.0 | 221       |
| 3  | Expression and Characterization of a Heme Oxygenase (Hmu O) fromCorynebacterium diphtheriae.<br>Journal of Biological Chemistry, 1998, 273, 837-841.                                                     | 1.6 | 192       |
| 4  | Degradation of Heme in Gram-Negative Bacteria: the Product of the hemO Gene of Neisseriae Is a Heme<br>Oxygenase. Journal of Bacteriology, 2000, 182, 6783-6790.                                         | 1.0 | 184       |
| 5  | Heme Oxygenase: Evolution, Structure, and Mechanism. Antioxidants and Redox Signaling, 2002, 4, 603-614.                                                                                                 | 2.5 | 167       |
| 6  | Adaptation of Iron Homeostasis Pathways by a Pseudomonas aeruginosa Pyoverdine Mutant in the<br>Cystic Fibrosis Lung. Journal of Bacteriology, 2014, 196, 2265-2276.                                     | 1.0 | 145       |
| 7  | Crystal Structure of Heme Oxygenase from the Gram-Negative PathogenNeisseria meningitidisand a<br>Comparison with Mammalian Heme Oxygenase-1â€. Biochemistry, 2001, 40, 11552-11558.                     | 1.2 | 136       |
| 8  | Structural Basis for Novel Î'-Regioselective Heme Oxygenation in the Opportunistic<br>PathogenPseudomonas aeruginosaâ€,‡. Biochemistry, 2004, 43, 5239-5245.                                             | 1.2 | 129       |
| 9  | Dual-seq transcriptomics reveals the battle for iron during Pseudomonas aeruginosa acute murine pneumonia. Scientific Reports, 2016, 6, 39172.                                                           | 1.6 | 126       |
| 10 | Heme and virulence: how bacterial pathogens regulate, transport and utilize heme. Natural Product<br>Reports, 2007, 24, 511.                                                                             | 5.2 | 124       |
| 11 | ldentification of Histidine 25 as the Heme Ligand in Human Liver Heme Oxygenase. Biochemistry, 1994, 33,<br>13734-13740.                                                                                 | 1.2 | 119       |
| 12 | Expression and characterization of truncated human heme oxygenase (hHO-1) and a fusion protein of hHO-1 with human cytochrome P450 reductase. Biochemistry, 1995, 34, 4421-4427.                         | 1.2 | 118       |
| 13 | Replacement of the Proximal Histidine Iron Ligand by a Cysteine or Tyrosine Converts Heme Oxygenase<br>to an Oxidaseâ€. Biochemistry, 1999, 38, 3733-3743.                                               | 1.2 | 110       |
| 14 | Resonance Raman and EPR spectroscopic studies on heme-heme oxygenase complexes. Biochemistry,<br>1993, 32, 14151-14157.                                                                                  | 1.2 | 107       |
| 15 | Extracellular Heme Uptake and the Challenge of Bacterial Cell Membranes. Annual Review of<br>Biochemistry, 2017, 86, 799-823.                                                                            | 5.0 | 99        |
| 16 | Characterization of the Periplasmic Heme-Binding Protein ShuT from the Heme Uptake System of<br>Shigella dysenteriae. Biochemistry, 2005, 44, 13179-13191.                                               | 1.2 | 98        |
| 17 | Oxidation of Heme to β- and δ-Biliverdin byPseudomonas aeruginosaHeme Oxygenase as a Consequence of<br>an Unusual Seating of the Heme. Journal of the American Chemical Society, 2002, 124, 14879-14892. | 6.6 | 97        |
| 18 | Heme oxygenation and the widening paradigm of heme degradation. Archives of Biochemistry and Biophysics, 2014, 544, 87-95.                                                                               | 1.4 | 89        |

ANGELA WILKS

| #  | Article                                                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Heme oxygenase structure and mechanism. Advances in Inorganic Chemistry, 2000, 51, 359-407.                                                                                                                                                                                                                                           | 0.4 | 88        |
| 20 | HutZ Is Required for Efficient Heme Utilization in Vibrio cholerae. Journal of Bacteriology, 2004, 186, 4142-4151.                                                                                                                                                                                                                    | 1.0 | 79        |
| 21 | The <i>prrF</i> -Encoded Small Regulatory RNAs Are Required for Iron Homeostasis and Virulence of Pseudomonas aeruginosa. Infection and Immunity, 2015, 83, 863-875.                                                                                                                                                                  | 1.0 | 79        |
| 22 | The Cytoplasmic Heme-binding Protein (PhuS) from the Heme Uptake System of Pseudomonas<br>aeruginosa Is an Intracellular Heme-trafficking Protein to the δ-Regioselective Heme Oxygenase. Journal<br>of Biological Chemistry, 2006, 281, 13652-13662.                                                                                 | 1.6 | 76        |
| 23 | Holo- and Apo-bound Structures of Bacterial Periplasmic Heme-binding Proteins. Journal of Biological<br>Chemistry, 2007, 282, 35796-35802.                                                                                                                                                                                            | 1.6 | 69        |
| 24 | Heme Utilization by Pathogenic Bacteria: Not All Pathways Lead to Biliverdin. Accounts of Chemical<br>Research, 2014, 47, 2291-2298.                                                                                                                                                                                                  | 7.6 | 67        |
| 25 | Heme Oxygenase His25Ala Mutant: Replacement of the Proximal Histidine Iron Ligand by Exogenous<br>Bases Restores Catalytic Activity. Journal of the American Chemical Society, 1995, 117, 2925-2926.                                                                                                                                  | 6.6 | 64        |
| 26 | Crystal Structures of the NO- and CO-bound Heme Oxygenase from Neisseriae meningitidis. Journal of<br>Biological Chemistry, 2003, 278, 34654-34659.                                                                                                                                                                                   | 1.6 | 64        |
| 27 | Differential Contributions of the Outer Membrane Receptors PhuR and HasR to Heme Acquisition in Pseudomonas aeruginosa. Journal of Biological Chemistry, 2015, 290, 7756-7766.                                                                                                                                                        | 1.6 | 64        |
| 28 | Proton NMR Investigation of Substrate-Bound Heme Oxygenase: Evidence for Electronic and Steric Contributions to Stereoselective Heme Cleavage. Biochemistry, 1994, 33, 6631-6641.                                                                                                                                                     | 1.2 | 63        |
| 29 | The Hydroxide Complex of Pseudomonas aeruginosa Heme Oxygenase as a Model of the Low-Spin<br>Iron(III) Hydroperoxide Intermediate in Heme Catabolism:  13C NMR Spectroscopic Studies Suggest the<br>Active Participation of the Heme in Macrocycle Hydroxylation. Journal of the American Chemical<br>Society, 2003, 125, 11842-11852 | 6.6 | 58        |
| 30 | Proteomic Analysis of the Pseudomonas aeruginosa Iron Starvation Response Reveals PrrF Small<br>Regulatory RNA-Dependent Iron Regulation of Twitching Motility, Amino Acid Metabolism, and Zinc<br>Homeostasis Proteins. Journal of Bacteriology, 2019, 201, .                                                                        | 1.0 | 54        |
| 31 | Azide-Inhibited Bacterial Heme Oxygenases Exhibit an S = 3/2 (dxz,dyz)3(dxy)1(dz2)1 Spin State:<br>Mechanistic Implications for Heme Oxidation. Journal of the American Chemical Society, 2005, 127,<br>9794-9807.                                                                                                                    | 6.6 | 52        |
| 32 | The P. aeruginosa Heme Binding Protein PhuS Is a Heme Oxygenase Titratable Regulator of Heme Uptake.<br>ACS Chemical Biology, 2013, 8, 1794-1802.                                                                                                                                                                                     | 1.6 | 51        |
| 33 | The Mechanism of Heme Transfer from the Cytoplasmic Heme Binding Protein PhuS to the<br>Î′-Regioselective Heme Oxygenase ofPseudomonas aeruginosaâ€. Biochemistry, 2006, 45, 11642-11649.                                                                                                                                             | 1.2 | 50        |
| 34 | Crystallization of recombinant human heme oxygenaseâ€1. Protein Science, 1998, 7, 1836-1838.                                                                                                                                                                                                                                          | 3.1 | 48        |
| 35 | Solution 1H NMR Investigation of the Molecular and Electronic Structure of the Active Site of<br>Substrate-Bound Human Heme Oxygenase:  the Nature of the Distal Hydrogen Bond Donor to Bound<br>Ligands. Journal of the American Chemical Society, 1998, 120, 8875-8884.                                                             | 6.6 | 48        |
| 36 | The Role of the Cytoplasmic Heme-binding Protein (PhuS) of Pseudomonas aeruginosa in Intracellular<br>Heme Trafficking and Iron Homeostasis. Journal of Biological Chemistry, 2009, 284, 56-66.                                                                                                                                       | 1.6 | 47        |

ANGELA WILKS

| #  | Article                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Induced fit on heme binding to the <i>Pseudomonas aeruginosa</i> cytoplasmic protein (PhuS) drives interaction with heme oxygenase (HemO). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5639-5644.                                   | 3.3 | 46        |
| 38 | Characterization of the Outer Membrane Receptor ShuA from the Heme Uptake System of Shigella dysenteriae. Journal of Biological Chemistry, 2007, 282, 15126-15136.                                                                                                                  | 1.6 | 45        |
| 39 | PAMDB: a comprehensive Pseudomonas aeruginosa metabolome database. Nucleic Acids Research, 2018,<br>46, D575-D580.                                                                                                                                                                  | 6.5 | 45        |
| 40 | Metabolic Flux of Extracellular Heme Uptake in Pseudomonas aeruginosa Is Driven by the<br>Iron-regulated Heme Oxygenase (HemO). Journal of Biological Chemistry, 2012, 287, 18342-18350.                                                                                            | 1.6 | 42        |
| 41 | A rapid seamless method for gene knockout in Pseudomonas aeruginosa. BMC Microbiology, 2017, 17,<br>199.                                                                                                                                                                            | 1.3 | 39        |
| 42 | Inhibition of the Bacterial Heme Oxygenases from <i>Pseudomonas aeruginosa</i> and <i>Neisseria<br/>meningitidis</i> :  Novel Antimicrobial Targets. Journal of Medicinal Chemistry, 2007, 50,<br>3804-3813.                                                                        | 2.9 | 38        |
| 43 | ldentification of the Proximal Ligand His-20 in Heme Oxygenase (Hmu O) from Corynebacterium<br>diphtheriae. Journal of Biological Chemistry, 2000, 275, 11686-11692.                                                                                                                | 1.6 | 37        |
| 44 | The ShuS Protein of Shigella dysenteriae Is a Heme-Sequestering Protein That Also Binds DNA. Archives of Biochemistry and Biophysics, 2001, 387, 137-142.                                                                                                                           | 1.4 | 36        |
| 45 | Iminoguanidines as Allosteric Inhibitors of the Iron-Regulated Heme Oxygenase (HemO) of<br><i>Pseudomonas aeruginosa</i> . Journal of Medicinal Chemistry, 2016, 59, 6929-6942.                                                                                                     | 2.9 | 33        |
| 46 | Metabolite-driven Regulation of Heme Uptake by the Biliverdin IXβ/δ-Selective Heme Oxygenase (HemO) of<br>Pseudomonas aeruginosa. Journal of Biological Chemistry, 2016, 291, 20503-20515.                                                                                          | 1.6 | 32        |
| 47 | Identification of Two Heme-Binding Sites in the Cytoplasmic Heme-Trafficking Protein PhuS from<br><i>Pseudomonas aeruginosa</i> and Their Relevance to Function. Biochemistry, 2007, 46, 14391-14402.                                                                               | 1.2 | 30        |
| 48 | Functional Characterization of the <i>Shigella dysenteriae</i> Heme ABC Transporter. Biochemistry, 2008, 47, 7977-7979.                                                                                                                                                             | 1.2 | 30        |
| 49 | Gallium(III)–Salophen as a Dual Inhibitor of <i>Pseudomonas aeruginosa</i> Heme Sensing and Iron<br>Acquisition. ACS Infectious Diseases, 2020, 6, 2073-2085.                                                                                                                       | 1.8 | 29        |
| 50 | Small Molecule Antivirulents Targeting the Iron-Regulated Heme Oxygenase (HemO) of <i>P.<br/>aeruginosa</i> . Journal of Medicinal Chemistry, 2013, 56, 2097-2109.                                                                                                                  | 2.9 | 27        |
| 51 | The Hydrogen-Bonding Network in Heme Oxygenase Also Functions as a Modulator of Enzyme<br>Dynamics:  Chaotic Motions upon Disrupting the H-Bond Network in Heme Oxygenase from<br><i>Pseudomonas aeruginosa</i> . Journal of the American Chemical Society, 2007, 129, 11730-11742. | 6.6 | 26        |
| 52 | Spectroscopic Determination of Distinct Heme Ligands in Outer-Membrane Receptors PhuR and HasR of<br><i>Pseudomonas aeruginosa</i> . Biochemistry, 2015, 54, 2601-2612.                                                                                                             | 1.2 | 26        |
| 53 | Heme uptake and utilization by hypervirulent Acinetobacter baumannii LAC-4 is dependent on a canonical heme oxygenase (abHemO). Archives of Biochemistry and Biophysics, 2019, 672, 108066.                                                                                         | 1.4 | 25        |
| 54 | Post-transcriptional regulation of the Pseudomonas aeruginosa heme assimilation system (Has) fine-tunes extracellular heme sensing. Journal of Biological Chemistry, 2019, 294, 2771-5555.                                                                                          | 1.6 | 24        |

ANGELA WILKS

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Extracellular Heme Uptake and the Challenges of Bacterial Cell Membranes. Current Topics in<br>Membranes, 2012, 69, 359-392.                                                                                                            | 0.5 | 22        |
| 56 | Backbone NMR Assignments and H/D Exchange Studies on the Ferric Azide- and Cyanide-Inhibited Forms of Pseudomonas aeruginosa Heme Oxygenase,. Biochemistry, 2006, 45, 4578-4592.                                                        | 1.2 | 21        |
| 57 | The Ferrous Verdohemeâ^'Heme Oxygenase Complex is Six-Coordinate and Low-Spin. Journal of the<br>American Chemical Society, 2005, 127, 17582-17583.                                                                                     | 6.6 | 20        |
| 58 | Heme Oxidation in a Chimeric Protein of the α-SelectiveNeisseriae meningitidisHeme Oxygenase with the<br>Distal Helix of the δ-SelectivePseudomonas aeruginosaâ€. Biochemistry, 2005, 44, 13713-13723.                                  | 1.2 | 19        |
| 59 | Ligand-induced allostery in the interaction of the <i>Pseudomonas aeruginosa</i> heme binding<br>protein with heme oxygenase. Proceedings of the National Academy of Sciences of the United States of<br>America, 2017, 114, 3421-3426. | 3.3 | 18        |
| 60 | Heme Inhibits the DNA Binding Properties of the Cytoplasmic Heme Binding Protein ofShigella<br>dysenteriae(ShuS)â€. Biochemistry, 2007, 46, 2994-3000.                                                                                  | 1.2 | 14        |
| 61 | Crystal structure of the Pseudomonas aeruginosa cytoplasmic heme binding protein, Apo-PhuS.<br>Journal of Inorganic Biochemistry, 2013, 128, 131-136.                                                                                   | 1.5 | 14        |
| 62 | Contributions of the heme coordinating ligands of the Pseudomonas aeruginosa outer membrane<br>receptor HasR to extracellular heme sensing and transport. Journal of Biological Chemistry, 2020,<br>295, 10456-10467.                   | 1.6 | 14        |
| 63 | The heme-binding protein PhuS transcriptionally regulates the Pseudomonas aeruginosa tandem sRNA prrF1,F2 locus. Journal of Biological Chemistry, 2021, 296, 100275.                                                                    | 1.6 | 13        |
| 64 | Structure-based design and biological evaluation of inhibitors of the pseudomonas aeruginosa heme oxygenase (pa-HemO). Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1024-1029.                                                 | 1.0 | 9         |
| 65 | Metallotherapeutics development in the age of iron-clad bacteria. Metallomics, 2020, 12, 1863-1877.                                                                                                                                     | 1.0 | 9         |
| 66 | 72 Mechanisms of Heme Uptake and Utilization in Bacterial Pathogens. Handbook of Porphyrin Science, 2011, , 357-398.                                                                                                                    | 0.3 | 7         |
| 67 | Modeling the native ensemble of PhuS using enhanced sampling MD and HDX-ensemble reweighting.<br>Biophysical Journal, 2021, 120, 5141-5157.                                                                                             | 0.2 | 7         |
| 68 | The Asp99–Arg188 salt bridge of the Pseudomonas aeruginosa HemO is critical in allowing conformational flexibility during catalysis. Journal of Biological Inorganic Chemistry, 2018, 23, 1057-1070.                                    | 1.1 | 6         |
| 69 | Extracellular haem utilization by the opportunistic pathogen Pseudomonas aeruginosa and its role in virulence and pathogenesis. Advances in Microbial Physiology, 2021, 79, 89-132.                                                     | 1.0 | 6         |
| 70 | Repurposing Acitretin as an Antipseudomonal Agent Targeting the <i>Pseudomonas aeruginosa</i> Iron-Regulated Heme Oxygenase. Biochemistry, 2021, 60, 689-698.                                                                           | 1.2 | 5         |
| 71 | Axial Heme Coordination by the Tyr-His Motif in the Extracellular Hemophore HasAp Is Critical for the<br>Release of Heme to the HasR Receptor of Pseudomonas aeruginosa. Biochemistry, 2021, 60, 2549-2559.                             | 1.2 | 5         |
| 72 | Recombinant Production of Biliverdin IXβ and δ Isomers in the T7 Promoter Compatible Escherichia coli<br>Nissle. Frontiers in Microbiology, 2021, 12, 787609.                                                                           | 1.5 | 4         |

|                                                                                                                                                                              | Angela Wi                         | Angela Wilks |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|-----------|
| Article                                                                                                                                                                      |                                   | IF           | CITATIONS |
| Catalytic turnover dependent modification of the Pseudomonas aeruginosa heme oxy<br>5,6-O-isopropyledine-2-O-allyl-ascorbic acid. Journal of Inorganic Biochemistry, 2008, 1 | genase (pa-HO) by<br>02, 251-259. | 1.5          | 3         |
| Bacterial Heme Oxygenases. , 2014, , 86-95.                                                                                                                                  |                                   |              | 2         |

| 75 | Understanding RNA Binding by the Nonclassical Zinc Finger Protein CPSF30, a Key Factor in Polyadenylation during Pre-mRNA Processing. Biochemistry, 2021, 60, 780-790. | 1.2 | 2 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 76 | NMR assignments of cd-HO, a 24ÂkDa heme oxygenase from Corynebacterium diphtheria. Biomolecular<br>NMR Assignments, 2007, 1, 55-56.                                    | 0.4 | 0 |
| 77 | Extracellular Heme Uptake and Metabolism in Bacterial Pathogenesis. Handbook of Porphyrin Science, 2013, , 267-315.                                                    | 0.3 | 0 |

#

74