Sabine Danthine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2398553/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of enzymatic hydrolysis on conformational and functional properties of chickpea protein isolate. Food Chemistry, 2015, 187, 322-330.	4.2	223
2	Chemical profiling of the major components in natural waxes to elucidate their role in liquid oil structuring. Food Chemistry, 2017, 214, 717-725.	4.2	173
3	Effect of drying methods on physico-chemical and functional properties of chickpea protein concentrates. Journal of Food Engineering, 2015, 165, 179-188.	2.7	157
4	Structural, functional, and ACE inhibitory properties of water-soluble polysaccharides from chickpea flours. International Journal of Biological Macromolecules, 2015, 75, 276-282.	3.6	141
5	Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. Journal of Asia-Pacific Entomology, 2017, 20, 337-340.	0.4	135
6	Flaxseed proteins: food uses and health benefits. International Journal of Food Science and Technology, 2011, 46, 221-228.	1.3	112
7	Modulating absorption and postprandial handling of dietary fatty acids by structuring fat in the meal: a randomized crossover clinical trial. American Journal of Clinical Nutrition, 2013, 97, 23-36.	2.2	99
8	Évolution des connaissances sur la membrane du globule gras du lait : synthèse bibliographique. Dairy Science and Technology, 2000, 80, 209-222.	0.9	92
9	Comparative analysis of triacylglycerol composition, melting properties and polymorphic behavior of palm oil and fractions. European Journal of Lipid Science and Technology, 2007, 109, 359-372.	1.0	86
10	Sequential crystallization of high and low melting waxes to improve oil structuring in wax-based oleogels. RSC Advances, 2017, 7, 12113-12125.	1.7	85
11	Influence of SFC, microstructure and polymorphism on texture (hardness) of binary blends of fats involved in the preparation of industrial shortenings. Food Research International, 2004, 37, 941-948.	2.9	81
12	Characterization of sugar beet pectic-derived oligosaccharides obtained by enzymatic hydrolysis. International Journal of Biological Macromolecules, 2013, 52, 148-156.	3.6	81
13	Effect of household cooking techniques on the microbiological load and the nutritional quality of mealworms (Tenebrio molitor L. 1758). Food Research International, 2018, 106, 503-508.	2.9	78
14	Phytosterols-induced viscoelasticity of oleogels prepared by using monoglycerides. Food Research International, 2017, 100, 832-840.	2.9	73
15	Crystallization and Gelation Behavior of Low- and High Melting Waxes in Rice Bran Oil: a Case-Study on Berry Wax and Sunflower Wax. Food Biophysics, 2017, 12, 97-108.	1.4	67
16	Development and characterization of chitosan films carrying Artemisia campestris antioxidants for potential use as active food packaging materials. International Journal of Biological Macromolecules, 2021, 183, 254-266.	3.6	67
17	Influence of monopalmitin on the isothermal crystallization mechanism of palm oil. Food Research International, 2013, 51, 344-353.	2.9	55
18	Effect of Î ³ -radiation on free radicals formation, structural changes and functional properties of wheat starch. International Journal of Biological Macromolecules, 2015, 80, 64-76.	3.6	55

#	Article	IF	CITATIONS
19	Mixed surfactant systems of sucrose esters and lecithin as a synergistic approach for oil structuring. Journal of Colloid and Interface Science, 2017, 504, 387-396.	5.0	50
20	Proteome analysis of the bovine milk fat globule: Enhancement of membrane purification. International Dairy Journal, 2008, 18, 885-893.	1.5	49
21	Assessment of partial coalescence in whippable oil-in-water food emulsions. Advances in Colloid and Interface Science, 2016, 229, 25-33.	7.0	49
22	Physicochemical and structural properties of compound dairy fat blends. Food Research International, 2012, 48, 187-195.	2.9	47
23	Study on the susceptibility of the bovine milk fat globule membrane proteins to enzymatic hydrolysis and organization of some of the proteins. International Dairy Journal, 2011, 21, 312-318.	1.5	45
24	Food-grade monoglyceride oil foams: the effect of tempering on foamability, foam stability and rheological properties. Food and Function, 2018, 9, 3143-3154.	2.1	45
25	Optimisation of a cheap and residential smallâ€scale production of edible crickets with local byâ€products as an alternative proteinâ€rich human food source in Ratanakiri Province, Cambodia. Journal of the Science of Food and Agriculture, 2016, 96, 627-632.	1.7	42
26	Enrichment of Anhydrous Milk Fat in Polyunsaturated Fatty Acid Residues from Linseed and Rapeseed Oils through Enzymatic Interesterification. Journal of Agricultural and Food Chemistry, 2008, 56, 1757-1765.	2.4	41
27	Enzymatic Interesterification of Palm Oil and Fractions: Monitoring the Degree of Interesterification using Different Methods. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 219-229.	0.8	40
28	Influence of a commercial monoacylglycerol on the crystallization mechanism of palm oil as compared to its pure constituents. Food Research International, 2014, 62, 694-700.	2.9	36
29	Determination of solid fat content (SFC) of binary fat blends and use of these data to predict SFC of selected ternary fat blends containing low-erucic rapeseed oil. JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 571-581.	0.8	30
30	Relating crystallization behavior of monoacylglycerols-diacylglycerol mixtures to the strength of their crystalline network in oil. Food Research International, 2019, 120, 504-513.	2.9	29
31	Physical and textural characteristics of hydrogenated low-erucic acid rapeseed oil and low-erucic acid rapeseed oil blends. JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 109-114.	0.8	28
32	Calorimetric study of milk fat/rapeseed oil blends and their interesterification products. European Journal of Lipid Science and Technology, 2009, 111, 376-385.	1.0	27
33	PHYSICOCHEMICAL PROPERTIES OF EUROPEAN BAKERY MARGARINES WITH AND WITHOUT TRANS FATTY ACIDS. Journal of Food Lipids, 2009, 16, 273-286.	0.9	26
34	Effect of Palm Oil Enzymatic Interesterification on Physicochemical and Structural Properties of Mixed Fat Blends. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1477-1487.	0.8	26
35	Labeling Regulations and Quality Control of Honey Origin: A Review. Food Reviews International, 2020, 36, 215-240.	4.3	25
36	Online flow cytometry, an interesting investigation process for monitoring lipid accumulation, dimorphism, and cells' growth in the oleaginous yeast Yarrowia lipolytica JMY 775. Bioresources and Bioprocessing, 2017, 4, 3.	2.0	22

#	Article	IF	CITATIONS
37	Enzymatic Interâ€Esterification of Binary Blends Containing <i>Irvingia gabonensis</i> Seed Fat to Produce Cocoa Butter Substitute. European Journal of Lipid Science and Technology, 2018, 120, 1700423.	1.0	22
38	Monitoring batch lipase catalyzed interesterification of palm oil and fractions by differential scanning calorimetry. Journal of Thermal Analysis and Calorimetry, 2014, 115, 2219-2229.	2.0	21
39	Physical compatibility between wax esters and triglycerides in hybrid shortenings and margarines prepared in rice bran oil. Journal of the Science of Food and Agriculture, 2018, 98, 1042-1051.	1.7	21
40	Comparison of steam and nitrogen in the physical deacidification of soybean oil. JAOCS, Journal of the American Oil Chemists' Society, 2004, 81, 611-617.	0.8	20
41	Physicochemical characterization and in vitro assessment of the nutritive value of starch yield from corn dried at different temperatures. Starch/Staerke, 2014, 66, 738-748.	1.1	20
42	Effect of highâ€intensity ultrasound on the oleogelation and physical properties of high melting point monoglycerides and triglycerides oleogels. Journal of Food Science, 2021, 86, 343-356.	1.5	20
43	Effect of enzymatic treatment on rheological properties, glass temperature transition and microstructure of date syrup. LWT - Food Science and Technology, 2015, 60, 339-345.	2.5	18
44	In situ analysis of lipid oxidation in oilseed-based food products using near-infrared spectroscopy and chemometrics: The sunflower kernel paste (tahini) example. Talanta, 2016, 155, 336-346.	2.9	18
45	Nutritional composition and rearing potential of the meadow grasshopper (Chorthippus parallelus) Tj ETQq1 1 ().784314 0.4	rgBT_/Overloc
46	Effect of Physicochemical Characteristics of Cellulosic Substrates on Enzymatic Hydrolysis by Means of a Multi-Stage Process for Cellobiose Production. Applied Biochemistry and Biotechnology, 2012, 166, 1423-1432.	1.4	17
47	The Influence of Particle Size Distribution on Sunflower Tahini Rheology and Structure. Journal of Food Process Engineering, 2014, 37, 411-426.	1.5	17
48	Crystallization and polymorphic behavior of enzymatically produced sunflower oil based cocoa butter equivalents. European Journal of Lipid Science and Technology, 2016, 118, 1521-1538.	1.0	17
49	Blending of hydrogenated low-erucic acid rapeseed oil, low-erucic acid rapeseed oil, and hydrogenated palm oil or palm oil in the preparation of shortenings. JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 1069-1075.	0.8	16
50	Comparison of the physicochemical behavior of model oil-in-water emulsions based on different lauric vegetal fats. Food Research International, 2013, 53, 156-163.	2.9	16
51	Structural and physicochemical characterization of Sphenostylis stenocarpa (Hochst. ex A. Rich.) Harms tuber starch. Food Chemistry, 2016, 212, 305-312.	4.2	16
52	Optimization of ultrasoundâ€assisted osmotic dehydration of pomegranate seeds (Punica granatum L.) using response surface methodology. Journal of Food Processing and Preservation, 2020, 44, e14657.	0.9	16
53	The effect of heating rates on functional properties of wheat and potato starch-water systems. LWT - Food Science and Technology, 2018, 88, 196-202.	2.5	15
54	Effect of proteose-peptone addition on some physico-chemical characteristics of recombined dairy creams. International Dairy Journal, 2007, 17, 889-895.	1.5	14

#	Article	IF	CITATIONS
55	Comparative Study of Thermal and Structural Behavior of Four Industrial Lauric Fats. Food and Bioprocess Technology, 2013, 6, 3381-3391.	2.6	14
56	Crystallization behaviour of binary fat blends containing shea stearin as hard fat. European Journal of Lipid Science and Technology, 2015, 117, 1687-1699.	1.0	14
57	Roasted Sunflower Kernel Paste (Tahini) Stability: Storage Conditions and Particle Size Influence. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 669-683.	0.8	14
58	pH level has a strong impact on population dynamics of the yeast Yarrowia lipolytica and oil micro-droplets in multiphasic bioreactor. FEMS Microbiology Letters, 2018, 365, .	0.7	14
59	Systematic Investigation of Co-Crystallization Properties in Binary and Ternary Mixtures of Triacylglycerols Containing Palmitic and Oleic Acids in Relation with Palm Oil Dry Fractionation. Foods, 2020, 9, 1891.	1.9	14
60	Effect of ageing on different egg yolk fractions on surface properties at the air–water interface. International Journal of Food Science and Technology, 2011, 46, 1716-1723.	1.3	13
61	Influence of Homogenization Treatment on Physicochemical Properties and Enzymatic Hydrolysis Rate of Pure Cellulose Fibers. Applied Biochemistry and Biotechnology, 2013, 169, 1315-1328.	1.4	12
62	Investigation of the influence of processing parameters on physicochemical properties of puff pastry margarines using surface response methodology. LWT - Food Science and Technology, 2013, 51, 225-232.	2.5	12
63	Binary Mixtures of Tripalmitoylglycerol (PPP) and 1,3â€Dipalmitoylâ€2â€stearoylâ€ <i>sn</i> â€glycerol (PSP): Polymorphism and Kinetic Phase Behavior. European Journal of Lipid Science and Technology, 2018, 120, 1700306.	1.0	11
64	Effects of Physical Ripening Conditions and Churning Temperature on the Butter-Making Process and the Physical Characteristics of Camel Milk Butter. Food and Bioprocess Technology, 2021, 14, 1518-1528.	2.6	11
65	Contribution to the study of camel milk fat globule membrane. International Journal of Food Sciences and Nutrition, 2006, 57, 382-390.	1.3	10
66	Enzymatic Interesterification of Anhydrous Milk Fat with Rapeseed and/or Linseed Oil: Oxidative Stability. Journal of Agricultural and Food Chemistry, 2009, 57, 6787-6794.	2.4	10
67	Interactions of lipases with milk fat globule membrane monolayers using a Langmuir film balance. International Dairy Journal, 2014, 35, 81-87.	1.5	10
68	Polymorphism and Kinetic Behavior of Binary Mixtures of Trisaturated Triacylglycerols Containing Palmitic and Stearic Acid Under Nonâ€isothermal Conditions. European Journal of Lipid Science and Technology, 2018, 120, 1800072.	1.0	10
69	Irvingia gabonensis seed fat as hard stock to formulate blends for trans free margarines. LWT - Food Science and Technology, 2019, 101, 747-756.	2.5	10
70	Physicochemical Properties of Palm Oilâ€Based Puff Pastry Model Margarines Related to Their Baking Performance in Longâ€Term Storage. European Journal of Lipid Science and Technology, 2021, 123, .	1.0	10
71	Effect of sonication pretreatment on physico-chemical, surface and thermal properties of date palm pollen protein concentrate. LWT - Food Science and Technology, 2019, 106, 128-136.	2.5	9
72	Effect of extraction methods on the physicochemical, structural, functional, and antioxidant properties of the dietary fiber concentrates from male date palm flowers. Journal of Food Biochemistry, 2020, 44, e13202.	1.2	9

#	Article	IF	CITATIONS
73	Characterisation of Fat Crystal Polymorphism in Cocoa Butter by Time-Domain NMR and DSC Deconvolution. Foods, 2021, 10, 520.	1.9	9
74	Date, Apple, and Pear By-Products as Functional Ingredients in Pasta: Cooking Quality Attributes and Physicochemical, Rheological, and Sensorial Properties. Foods, 2022, 11, 1393.	1.9	9
75	Enzymatically prepared n-alkyl esters of glucuronic acid: The effect of freeze-drying conditions and hydrophobic chain length on thermal behavior. Journal of Colloid and Interface Science, 2008, 321, 154-158.	5.0	8
76	Interfacial and Foaming Properties of Two Types of Total Proteose-Peptone Fractions. Food and Bioprocess Technology, 2013, 6, 1944-1952.	2.6	8
77	Correlations Between Cloud Point and Compositional Properties of Palm Oil and Liquid Fractions from Dry Fractionation. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 841-853.	0.8	7
78	Physico-chemical and functional properties of dried male date palm flowers. Food Bioscience, 2019, 31, 100441.	2.0	7
79	Modulating the crystallization of phytosterols with monoglycerides in the binary mixture systems: mixing behavior and eutectic formation. Chemistry and Physics of Lipids, 2020, 230, 104912.	1.5	7
80	Palm-based fat crystallized at different temperatures with and without high-intensity ultrasound in batch and in a scraped surface heat exchanger. LWT - Food Science and Technology, 2021, 138, 110593.	2.5	7
81	Retrogradation and gelling behaviours of partially gelatinised potato starch as affected by the degree of preâ€gelatinisation. International Journal of Food Science and Technology, 2022, 57, 426-435.	1.3	7
82	Influence of sonocrystallization on lipid crystals multicomponent oleogels structuration and physical properties. Food Research International, 2022, 154, 110997.	2.9	7
83	Physicochemical characteristics of ternary fat blends involving low-erucic rapeseed oil. European Journal of Lipid Science and Technology, 2005, 107, 627-633.	1.0	6
84	Physicochemical characterization of dextrins prepared with amylases from sorghum malt. Starch/Staerke, 2013, 65, 962-968.	1.1	6
85	Do Wildflower Strips Favor Insect Pest Populations at Field Margins?. Agriculture and Agricultural Science Procedia, 2015, 6, 30-37.	0.6	6
86	Genotype contribution to the chemical composition of banana rachis and implications for thermo/biochemical conversion. Biomass Conversion and Biorefinery, 2015, 5, 409-416.	2.9	6
87	Foamability and Foam Stability of Male and Female Date Palm Sap (Phoenix dactylifera L.) During the Collection Period. Food Biophysics, 2015, 10, 360-367.	1.4	6
88	Effect of processing conditions as highâ€intensity ultrasound, agitation, and cooling temperature on the physical properties of a low saturated fat. Journal of Food Science, 2020, 85, 3380-3390.	1.5	6
89	Effect of Milk Fat Concentration on Fat Crystallization of Palm Oilâ€Based Shortenings. JAOCS, Journal of the American Oil Chemists' Society, 2021, 98, 115-125.	0.8	6
90	Polymer coated fat crystals as oil structuring agents: Fabrication and oil-structuring properties. Food Hydrocolloids, 2021, 115, 106623.	5.6	6

#	Article	IF	CITATIONS
91	Effect of ultrafiltration process on physico-chemical, rheological, microstructure and thermal properties of syrups from male and female date palm saps. Food Chemistry, 2016, 203, 175-182.	4.2	5
92	Influence of Enzymatic Remediation on Compositional and Thermal Properties of Palm Oil and Palm Oleins from Dry Fractionation. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 821-831.	0.8	4
93	Homogeneous triacylglycerol tracers have an impact on the thermal and structural properties of dietary fat and its lipolysis rate under simulated physiological conditions. Chemistry and Physics of Lipids, 2019, 225, 104815.	1.5	4
94	Microwave-Assisted Saponification Method Followed by Solid-Phase Extraction for the Characterization of Sterols and Dialkyl Ketones in Fats. Foods, 2021, 10, 445.	1.9	4
95	Influence of sonication, temperature, and agitation, on the physical properties of a palm-based fat crystallized in a continuous system. Ultrasonics Sonochemistry, 2021, 74, 105550.	3.8	4
96	Oil Diffusion in Fat Crystal Matrices: Characterization by NMR Relaxometry and Diffusometry. European Journal of Lipid Science and Technology, 2021, 123, 2000237.	1.0	3
97	Calculation procedure for formulating lauric and palmitic fat blends based on the grouping of triacylglycerol melting points. Grasas Y Aceites, 2017, 68, 221.	0.3	3
98	High-intensity Ultrasound as a Tool to Form Water in Oleogels Emulsions Structured by Lipids Oleogelators. Food Biophysics, 2022, 17, 361-374.	1.4	3
99	Effect of sonication pretreatment on physicochemical, surface, thermal, and functional properties of fibroâ€proteic extracts from male date palm flowers. Journal of Food Processing and Preservation, 2020, 44, e14963.	0.9	2
100	Crystallization mechanisms in camel milk cream during physical ripening: Effect of temperature and ripening duration. Food and Bioproducts Processing, 2021, 127, 435-442.	1.8	2
101	Polysaccharides Extracted From Deverra Tortuosa Wastes: Structural, Functional, Antioxidant, Antihypertensive and Cytotoxic Properties. Waste and Biomass Valorization, 2022, 13, 3999-4012.	1.8	2
102	Efficiency of Osmotic Dehydration of Pomegranate Seeds in Polyols Solutions Using Response Surface Methodology. Horticulturae, 2021, 7, 268.	1.2	1