Yu-Cheng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2398494/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tunable Optical Vortex from a Nanogroove-Structured Optofluidic Microlaser. Nano Letters, 2022, 22, 1425-1432.	4.5	8
2	Enzymeâ€Programmable Microgel Lasers for Information Encoding and Antiâ€Counterfeiting. Advanced Materials, 2022, 34, e2107809.	11.1	20
3	Multicolor Light Mixing in Optofluidic Concave Interfaces for Anticounterfeiting with Deep Learning Authentication. ACS Applied Materials & amp; Interfaces, 2022, 14, 10927-10935.	4.0	7
4	Lowâ€Power Photodetectors Based on PVAâ€Modified Reduced Graphene Oxide Hybrid Solutions. Macromolecular Rapid Communications, 2022, 43, e2100854.	2.0	6
5	Ultra-sensitive DNAzyme-based optofluidic biosensor with liquid crystal-Au nanoparticle hybrid amplification for molecular detection. Sensors and Actuators B: Chemical, 2022, 359, 131608.	4.0	21
6	Fiber Optofluidic Microlasers: Structures, Characteristics, and Applications. Laser and Photonics Reviews, 2022, 16, .	4.4	32
7	Optical Resonator Enhanced Photovoltaics and Photocatalysis: Fundamental and Recent Progress. Laser and Photonics Reviews, 2022, 16, .	4.4	21
8	Monitoring osmotic pressure with a hydrogel integrated optofluidic microlaser. Journal of Materials Chemistry C, 2022, 10, 8400-8406.	2.7	3
9	Direct Imaging of Weakâ€ŧoâ€Strongâ€Coupling Dynamics in Biological Plasmon–Exciton Systems. Laser and Photonics Reviews, 2022, 16, .	4.4	3
10	Bioresponsive microlasers with tunable lasing wavelength. Nanoscale, 2021, 13, 1608-1615.	2.8	16
11	Lasing action in microdroplets modulated by interfacial molecular forces. Advanced Photonics, 2021, 3, .	6.2	15
12	Applications of liquid crystals in biosensing. Soft Matter, 2021, 17, 4675-4702.	1.2	75
13	Optofluidic Fiber Laser with Full-Color Lasing Emission. , 2021, , .		0
14	Deep Learning Powered Single Cell Biological Microlasers. , 2021, , .		0
15	Inkjet Printed Optofluidic Biolasers for Laser Imaging Analysis of Living Organism. , 2021, , .		0
16	Imaging-based Laser Barcode for Cellular Phenotyping. , 2021, , .		0
17	Distinguishing small molecules with molecular laser polarization. , 2021, , .		0

#	Article	IF	CITATIONS
19	Stimulated chiral light-matter interactions in biological microlasers. , 2021, , .		Ο
20	Imaging-Based Optofluidic Biolaser Array Encapsulated with Dynamic Living Organisms. Analytical Chemistry, 2021, 93, 5823-5830.	3.2	10
21	Semi-transparent reduced graphene oxide photodetectors for ultra-low power operation. Optics Express, 2021, 29, 14208.	1.7	11
22	Topological Encoded Vector Beams for Monitoring Amyloid‣ipid Interactions in Microcavity. Advanced Science, 2021, 8, 2100096.	5.6	11
23	Stimulated Chiral Light–Matter Interactions in Biological Microlasers. ACS Nano, 2021, 15, 8965-8975.	7.3	22
24	Programmable Rainbow-Colored Optofluidic Fiber Laser Encoded with Topologically Structured Chiral Droplets. ACS Nano, 2021, 15, 11126-11136.	7.3	24
25	Light-Harvesting in Biophotonic Optofluidic Microcavities via Whispering-Gallery Modes. ACS Applied Materials & Interfaces, 2021, 13, 36909-36918.	4.0	5
26	Liquid crystal-amplified optofluidic biosensor for ultra-highly sensitive and stable protein assay. PhotoniX, 2021, 2, 18.	5.5	35
27	Biological tunable photonics: Emerging optoelectronic applications manipulated by living biomaterials. Progress in Quantum Electronics, 2021, 80, 100361.	3.5	9
28	Self-Assembled Biophotonic Lasing Network Driven by Amyloid Fibrils in Microcavities. ACS Nano, 2021, 15, 15007-15016.	7.3	5
29	Cellular Features Revealed by Transverse Laser Modes in Frequency Domain. Advanced Science, 2021, , 2103550.	5.6	5
30	Fast and Reproducible ELISA Laser Platform for Ultrasensitive Protein Quantification. ACS Sensors, 2020, 5, 110-117.	4.0	34
31	Monitoring Neuron Activities and Interactions with Laser Emissions. ACS Photonics, 2020, 7, 2182-2189.	3.2	13
32	Distinguishing Small Molecules in Microcavity with Molecular Laser Polarization. ACS Photonics, 2020, 7, 1908-1914.	3.2	23
33	DNA Self-Switchable Microlaser. ACS Nano, 2020, 14, 16122-16130.	7.3	22
34	Hydrogel Microlasers for Versatile Biomolecular Analysis Based on a Lasing Microarray. Advanced Photonics Research, 2020, 1, 2000041.	1.7	10
35	Low-Power, Large-Area and High-Performance CdSe Quantum Dots/Reduced Graphene Oxide Photodetectors. IEEE Access, 2020, 8, 95855-95863.	2.6	8
36	Interfacial Microlasers: Lasingâ€Encoded Microsensor Driven by Interfacial Cavity Resonance Energy Transfer (Advanced Optical Materials 7/2020). Advanced Optical Materials, 2020, 8, 2070029.	3.6	1

#	Article	IF	CITATIONS
37	Tunable Microlasers Modulated by Intracavity Spherical Confinement with Chiral Liquid Crystal. Advanced Optical Materials, 2020, 8, 1902184.	3.6	19
38	Microalgae living sensor for metal ion detection with nanocavity-enhanced photoelectrochemistry. Biosensors and Bioelectronics, 2020, 165, 112420.	5.3	34
39	Bio-electrostatic sensitive droplet lasers for molecular detection. Nanoscale Advances, 2020, 2, 2713-2719.	2.2	45
40	Lasingâ€Encoded Microsensor Driven by Interfacial Cavity Resonance Energy Transfer. Advanced Optical Materials, 2020, 8, 1901596.	3.6	29
41	Enhanced Biophotocurrent Generation in Living Photosynthetic Optical Resonator. Advanced Science, 2020, 7, 1903707.	5.6	16
42	Dynamic photonic barcodes for molecular detection based on cavity-enhanced energy transfer. Advanced Photonics, 2020, 2, .	6.2	11
43	Two-core photonic crystal fiber with selective liquid infiltration in the central air hole for temperature sensing. OSA Continuum, 2020, 3, 2264.	1.8	1
44	Biologically Wavelength-Tunable Droplet Laser for Molecular Barcoding Analysis. , 2020, , .		0
45	Interfacial Lasing Microsensors Driven by Cavity Resonant Energy Transfer. , 2020, , .		0
46	Electrostatic-responsive microdroplet lasers for ultrasensitive molecular detection. , 2020, , .		0
47	Biological Lasers for Biomedical Applications. Advanced Optical Materials, 2019, 7, 1900377.	3.6	102
48	Ultrasound Modulated Droplet Lasers. ACS Photonics, 2019, 6, 531-537.	3.2	17
49	A fast and reproducible ELISA laser platform. , 2019, , .		1
50	Chromatin laser imaging reveals abnormal nuclear changes for early cancer detection. Biomedical Optics Express, 2019, 10, 838.	1.5	11
51	High-Q, low-mode-volume microsphere-integrated Fabry–Perot cavity for optofluidic lasing applications. Photonics Research, 2019, 7, 50.	3.4	38
52	Ultrasound modulated droplet lasers. , 2019, , .		0
53	A robust tissue laser platform for analysis of formalin-fixed paraffin-embedded biopsies. Lab on A Chip, 2018, 18, 1057-1065.	3.1	26
54	Nanowire lasers as intracellular probes. Nanoscale, 2018, 10, 9729-9735.	2.8	54

#	Article	IF	CITATIONS
55	White-Light Photosensors Based on Ag Nanoparticle-Reduced Graphene Oxide Hybrid Materials. Micromachines, 2018, 9, 655.	1.4	12
56	Rapid Mouse Follicle Stimulating Hormone Quantification and Estrus Cycle Analysis Using an Automated Microfluidic Chemiluminescent ELISA System. ACS Sensors, 2018, 3, 2327-2334.	4.0	30
57	Laser Emission Microscopy: A Novel Tool for High-contrast Cancer Screening with Nuclear Biomarkers. , 2018, , .		0
58	Laser-emission Based Microscopy for Cancer Diagnosis. , 2018, , .		0
59	Versatile tissue lasers based on high- <i>Q</i> Fabry–Pérot microcavities. Lab on A Chip, 2017, 17, 538-548.	3.1	35
60	Multiplexed lasing in tissues. Proceedings of SPIE, 2017, , .	0.8	0
61	An integrated microwell array platform for cell lasing analysis. Lab on A Chip, 2017, 17, 2814-2820.	3.1	28
62	Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis. Nature Biomedical Engineering, 2017, 1, 724-735.	11.6	89
63	Neuron Lasers: Calcium Imaging of Spontaneous Neuronal Activities. , 2017, , .		0
64	Multiplexed Subcellular Lasing in Cancer Tissues for Molecular Diagnostics. , 2017, , .		0
65	Dietary adaptions in the ultrastructure of dinosaur dentine. Journal of the Royal Society Interface, 2016, 13, 20160626.	1.5	12
66	Optofluidic chlorophyll lasers. Lab on A Chip, 2016, 16, 2228-2235.	3.1	56
67	Lasing in blood. Optica, 2016, 3, 809.	4.8	84
68	Optofluidic Lasers in Blood. , 2016, , .		0
69	Biologically Inspired Optofluidic Lasers via Chlorophylls. , 2016, , .		0
70	Separation and onâ€line preconcentration of nonsteroidal antiâ€inflammatory drugs by microemulsion electrokinetic chromatography. Electrophoresis, 2015, 36, 2745-2753.	1.3	3
71	Third-harmonic generation susceptibility spectroscopy in free fatty acids. Journal of Biomedical Optics, 2015, 20, 095013.	1.4	15
72	Third-harmonic generation microscopy reveals dental anatomy in ancient fossils. Optics Letters, 2015, 40, 1354.	1.7	18

#	Article	IF	CITATIONS
73	Design and fabrication of birefringent nano-grating structure for circularly polarized light emission. Optics Express, 2014, 22, 7388.	1.7	11
74	Plasmonic ITO-free polymer solar cell. Optics Express, 2014, 22, A438.	1.7	17
75	An investigation into the stability of microemulsions in electrophoresis. Electrophoresis, 2014, 35, 2901-2906.	1.3	3
76	3D Visualization of Dental Anatomy in Ancient Fossil Vertebrates by Using Third Harmonic Generation Microscopy. , 2014, , .		0
77	Emission Enhancement in Ag/\${m SiO}_{2}\$/Ag Thermal Emitter by Using a Hexagonal Dimple Array. IEEE Photonics Technology Letters, 2013, 25, 1328-1331.	1.3	0
78	Improved Performance of Plasmonic Thermal Emitter via Incorporation of Gold Nanoparticles. IEEE Photonics Technology Letters, 2013, 25, 1727-1730.	1.3	2
79	Enhanced Transmission of Higher Order Plasmon Modes With Random Au Nanoparticles in Periodic Hole Arrays. IEEE Photonics Technology Letters, 2013, 25, 47-50.	1.3	7
80	An LMI-Based Method for Reference Spur Reduction in Charge-Pump Phase-Locked Loops Containing Loop Delay. Circuits, Systems, and Signal Processing, 2012, 31, 1615-1629.	1.2	2
81	Nanoprojection Lithography Using Self-Assembled Interference Modules for Manufacturing Plasmonic Gratings. IEEE Photonics Technology Letters, 2012, 24, 1273-1275.	1.3	2
82	Effect of Paired Apertures in a Periodic Hole Array on Higher Order Plasmon Modes. IEEE Photonics Technology Letters, 2012, 24, 2052-2055.	1.3	3
83	Improved photoresponse of InAs/GaAs quantum dot infrared photodetectors by using GaAs1â^'xSbx strain reducing layer. Applied Physics Letters, 2012, 100, .	1.5	15
84	Zirconia nanoparticles-coated column for the capillary electrochromatographic separation of iron-binding- and phosphorylated-proteins. Analyst, The, 2011, 136, 1481.	1.7	16
85	An insight into the mechanism of CEC separation of template analogues on a norepinephrineâ€imprinted monolith. Journal of Separation Science, 2011, 34, 2293-2300.	1.3	12
86	Preparation and evaluation of a monolithic molecularly imprinted polymer for the chiral separation of neurotransmitters and their analogues by capillary electrochromatography. Journal of Chromatography A, 2011, 1218, 849-855.	1.8	120
87	Enhancement of chemiluminescence of the KIO ₄ –luminol system by gallic acid, acetaldehyde and Mn ²⁺ : application for the determination of catecholamines. Luminescence, 2010, 25, 43-49.	1.5	11
88	Roughness Effect on Uniformity and Reliability of Sequential Lateral Solidified Low-Temperature Polycrystalline Silicon Thin-Film Transistor. Electrochemical and Solid-State Letters, 2006, 9, H81.	2.2	7
89	Brain Cell Laser Powered by Deepâ€Learningâ€Enhanced Laser Modes. Advanced Optical Materials, 0, , 2101421	3.6	5
90	Multifunctional Laser Imaging of Cancer Cell Secretion with Hybrid Liquid Crystal Resonators. Laser and Photonics Reviews, 0, , 2100734.	4.4	2

6