Zhitao Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/239797/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence study of bottom cycle ratios and superheat for vessels waste heat cascade recovery based on TEG-ORC combined cycle system employing R245fa. International Journal of Green Energy, 2023, 20, 734-743.	3.8	2
2	An investigation on the promoting effect of Pr modification on SO2 resistance over MnOx catalysts for selective reduction of NO with NH3. Environmental Science and Pollution Research, 2022, 29, 17295-17308.	5.3	4
3	Insight into the promoting effect of support pretreatment with sulfate acid on selective catalytic reduction performance of CeO2/ZrO2 catalysts. Journal of Colloid and Interface Science, 2022, 608, @Xidationabsorption of gaseous <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>9.4</td><td>26</td></mml:math>	9.4	26
4	display= inline id= d1e544 aitimg= si6.svg > <mm:mrow><mm:msub><mm:mrow><mm:mrow><mm:mrow><mm:mrow><mm:mrow><mm:mrow><mm!mrow><mm!mrow></mm!mrow></mm!mrow>mathvariant="normal">S using <mm!math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e557"</mm!math </mm:mrow></mm:mrow></mm:mrow></mm:mrow></mm:mrow></mm:mrow></mm:msub></mm:mrow>	> <mml:mi 6.1</mml:mi 	3
5	Attimg= si7.svg > <mmi:mrow><mmi:mi mathyariant="normal">UV<mmi:mo>/</mmi:mo>/smmi: A flexible thermoelectric film based on Bi₂Te₃for wearable applications. Functional Materials Letters, 2022, 15, .</mmi:mi </mmi:mrow>	1.2	13
6	Fe and Mn mixed oxide catalysts supported on Sn-modified TiO ₂ for the selective catalytic reduction of NO with NH ₃ at low temperature. New Journal of Chemistry, 2022, 46, 1621-1636.	2.8	11
7	Mechanistic insight into the promoting effect of partial substitution of Mn by Ce on N2 selectivity of MnTiO catalyst for NH3-SCR of NO. Journal of the Taiwan Institute of Chemical Engineers, 2022, 133, 104269.	5.3	13
8	UV enhanced denitrification using chlorine from seawater electrolysis for hydrogen production. International Journal of Hydrogen Energy, 2021, 46, 16836-16846.	7.1	7
9	Study on characteristics of particulate emission of diesel aftertreatment with reciprocating flow. Energy Science and Engineering, 2021, 9, 535-547.	4.0	1
10	Insight into the Promoting Role of Er Modification on SO2 Resistance for NH3-SCR at Low Temperature over FeMn/TiO2 Catalysts. Catalysts, 2021, 11, 618.	3.5	8
11	Enhancement effects of Er modification on comprehensive performance of FeMn/TiO2 catalysts for selective reduction of NO with NH3 at low temperature. Journal of Environmental Chemical Engineering, 2021, 9, 105653.	6.7	14
12	Pr-modified MnO catalysts for selective reduction of NO with NH3 at low temperature. Journal of the Taiwan Institute of Chemical Engineers, 2021, 125, 132-140.	5.3	23
13	Characterization of WMnCeTiOx catalysts prepared by different methods for the selective reduction of NO with NH3. New Journal of Chemistry, 2021, 45, 19456-19466.	2.8	1
14	A Novel Method for Simultaneous Removal of NO and SO2 from Marine Exhaust Gas via In-Site Combination of Ozone Oxidation and Wet Scrubbing Absorption. Journal of Marine Science and Engineering, 2020, 8, 943.	2.6	13
15	Effects of ferric and manganese precursors on catalytic activity of Fe-Mn/TiO2 catalysts for selective reduction of NO with ammonia at low temperature. Environmental Science and Pollution Research, 2020, 27, 40870-40881.	5.3	15
16	NO _{<i>x</i>} Removal from Flue Gas Using an Ozone Advanced Oxidation Process with Injection of Low Concentration of Ethanol: Performance and Mechanism. Energy & Fuels, 2020, 34, 2080-2088.	5.1	8
17	Experimental Study on a Diesel Particulate Filter with Reciprocating Flow. ACS Omega, 2019, 4, 17098-17108.	3.5	14
18	Performance modelling of seawater electrolysis in an undivided cell: Effects of current density and seawater salinity. Chemical Engineering Research and Design, 2019, 143, 79-89.	5.6	15

ΖΗΙΤΑΟ ΗΑΝ

#	Article	IF	CITATIONS
19	Simultaneous Removal of NO and SO ₂ from Exhaust Gas by Cyclic Scrubbing and Online Supplementing pH-Buffered NaClO ₂ Solution. Energy & Fuels, 2019, 33, 6591-6599.	5.1	22
20	Removal of NOx and SO2 from simulated ship emissions using wet scrubbing based on seawater electrolysis technology. Chemical Engineering Journal, 2018, 331, 8-15.	12.7	73
21	Enhanced fluorescence detection of proteins using ZnO nanowires integrated inside microfluidic chips. Biosensors and Bioelectronics, 2018, 99, 368-374.	10.1	89
22	Experimental Investigation of the Steam Ejector in a Single-Effect Thermal Vapor Compression Desalination System Driven by a Low-Temperature Heat Source. Energies, 2018, 11, 2282.	3.1	17
23	Nitrogen oxide removal from simulated flue gas by UV-irradiated electrolyzed seawater: Efficiency optimization and pH-dependent mechanisms. Chemical Engineering Journal, 2018, 354, 653-662.	12.7	15
24	NO Removal from Simulated Flue Gas with a NaClO2 Mist Generated Using the Ultrasonic Atomization Method. Energies, 2018, 11, 1043.	3.1	5
25	Synthesis and characterization of Ag@ZnO nanostructures for photocatalytic degradation of rhodamine B: influence of calcination temperature and Ag content. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	8
26	New Experimental Results of NO Removal from Simulated Flue Gas by Wet Scrubbing Using NaClO Solution. Energy & Fuels, 2017, 31, 3047-3054.	5.1	42
27	An investigation of mass transfer-reaction kinetics of NO absorption by wet scrubbing using an electrolyzed seawater solution. RSC Advances, 2017, 7, 18821-18829.	3.6	5
28	Nitrogen Oxide Removal from Simulated Flue Gas by UV-Irradiated Sodium Chlorite Solution in a Bench-Scale Scrubbing Reactor. Industrial & Engineering Chemistry Research, 2017, 56, 3671-3678.	3.7	23
29	Kinetics of Nitric Oxide Absorption from Simulated Flue Gas by a Wet UV/Chlorine Advanced Oxidation Process. Energy & Fuels, 2017, 31, 7263-7271.	5.1	19
30	NO _{<i>x</i>} Removal from Simulated Marine Exhaust Gas by Wet Scrubbing Using NaClO Solution. Journal of Chemistry, 2017, 2017, 1-10.	1.9	8
31	Nitrogen oxide removal using seawater electrolysis in an undivided cell for ocean-going vessels. RSC Advances, 2016, 6, 114623-114631.	3.6	32
32	An investigation on NO removal by wet scrubbing using NaClO2 seawater solution. SpringerPlus, 2016, 5, 751.	1.2	18