Zhitao Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/239797/publications.pdf Version: 2024-02-01

ΖΗΙΤΛΟ ΗΛΝ

#	Article	IF	CITATIONS
1	Enhanced fluorescence detection of proteins using ZnO nanowires integrated inside microfluidic chips. Biosensors and Bioelectronics, 2018, 99, 368-374.	10.1	89
2	Removal of NOx and SO2 from simulated ship emissions using wet scrubbing based on seawater electrolysis technology. Chemical Engineering Journal, 2018, 331, 8-15.	12.7	73
3	New Experimental Results of NO Removal from Simulated Flue Gas by Wet Scrubbing Using NaClO Solution. Energy & Fuels, 2017, 31, 3047-3054.	5.1	42
4	Nitrogen oxide removal using seawater electrolysis in an undivided cell for ocean-going vessels. RSC Advances, 2016, 6, 114623-114631.	3.6	32
5	Insight into the promoting effect of support pretreatment with sulfate acid on selective catalytic reduction performance of CeO2/ZrO2 catalysts. Journal of Colloid and Interface Science, 2022, 608, 2718-2729.	9.4	26
6	Nitrogen Oxide Removal from Simulated Flue Gas by UV-Irradiated Sodium Chlorite Solution in a Bench-Scale Scrubbing Reactor. Industrial & Engineering Chemistry Research, 2017, 56, 3671-3678.	3.7	23
7	Pr-modified MnO catalysts for selective reduction of NO with NH3 at low temperature. Journal of the Taiwan Institute of Chemical Engineers, 2021, 125, 132-140.	5.3	23
8	Simultaneous Removal of NO and SO ₂ from Exhaust Gas by Cyclic Scrubbing and Online Supplementing pH-Buffered NaClO ₂ Solution. Energy & Fuels, 2019, 33, 6591-6599.	5.1	22
9	Kinetics of Nitric Oxide Absorption from Simulated Flue Gas by a Wet UV/Chlorine Advanced Oxidation Process. Energy & Fuels, 2017, 31, 7263-7271.	5.1	19
10	An investigation on NO removal by wet scrubbing using NaClO2 seawater solution. SpringerPlus, 2016, 5, 751.	1.2	18
11	Experimental Investigation of the Steam Ejector in a Single-Effect Thermal Vapor Compression Desalination System Driven by a Low-Temperature Heat Source. Energies, 2018, 11, 2282.	3.1	17
12	Nitrogen oxide removal from simulated flue gas by UV-irradiated electrolyzed seawater: Efficiency optimization and pH-dependent mechanisms. Chemical Engineering Journal, 2018, 354, 653-662.	12.7	15
13	Performance modelling of seawater electrolysis in an undivided cell: Effects of current density and seawater salinity. Chemical Engineering Research and Design, 2019, 143, 79-89.	5.6	15
14	Effects of ferric and manganese precursors on catalytic activity of Fe-Mn/TiO2 catalysts for selective reduction of NO with ammonia at low temperature. Environmental Science and Pollution Research, 2020, 27, 40870-40881.	5.3	15
15	Experimental Study on a Diesel Particulate Filter with Reciprocating Flow. ACS Omega, 2019, 4, 17098-17108.	3.5	14
16	Enhancement effects of Er modification on comprehensive performance of FeMn/TiO2 catalysts for selective reduction of NO with NH3 at low temperature. Journal of Environmental Chemical Engineering, 2021, 9, 105653.	6.7	14
17	A Novel Method for Simultaneous Removal of NO and SO2 from Marine Exhaust Gas via In-Site Combination of Ozone Oxidation and Wet Scrubbing Absorption. Journal of Marine Science and Engineering, 2020, 8, 943.	2.6	13
18	A flexible thermoelectric film based on Bi ₂ Te ₃ for wearable applications. Functional Materials Letters, 2022, 15, .	1.2	13

ΖΗΙΤΑΟ ΗΑΝ

#	Article	IF	CITATIONS
19	Mechanistic insight into the promoting effect of partial substitution of Mn by Ce on N2 selectivity of MnTiO catalyst for NH3-SCR of NO. Journal of the Taiwan Institute of Chemical Engineers, 2022, 133, 104269.	5.3	13
20	Fe and Mn mixed oxide catalysts supported on Sn-modified TiO ₂ for the selective catalytic reduction of NO with NH ₃ at low temperature. New Journal of Chemistry, 2022, 46, 1621-1636.	2.8	11
21	Synthesis and characterization of Ag@ZnO nanostructures for photocatalytic degradation of rhodamine B: influence of calcination temperature and Ag content. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	8
22	NO _{<i>x</i>} Removal from Simulated Marine Exhaust Gas by Wet Scrubbing Using NaClO Solution. Journal of Chemistry, 2017, 2017, 1-10.	1.9	8
23	NO _{<i>x</i>} Removal from Flue Gas Using an Ozone Advanced Oxidation Process with Injection of Low Concentration of Ethanol: Performance and Mechanism. Energy & Fuels, 2020, 34, 2080-2088.	5.1	8
24	Insight into the Promoting Role of Er Modification on SO2 Resistance for NH3-SCR at Low Temperature over FeMn/TiO2 Catalysts. Catalysts, 2021, 11, 618.	3.5	8
25	UV enhanced denitrification using chlorine from seawater electrolysis for hydrogen production. International Journal of Hydrogen Energy, 2021, 46, 16836-16846.	7.1	7
26	An investigation of mass transfer-reaction kinetics of NO absorption by wet scrubbing using an electrolyzed seawater solution. RSC Advances, 2017, 7, 18821-18829.	3.6	5
27	NO Removal from Simulated Flue Gas with a NaClO2 Mist Generated Using the Ultrasonic Atomization Method. Energies, 2018, 11, 1043.	3.1	5
28	An investigation on the promoting effect of Pr modification on SO2 resistance over MnOx catalysts for selective reduction of NO with NH3. Environmental Science and Pollution Research, 2022, 29, 17295-17308.arption of gaseous < mml:math.xmlns:mml="http://www.w3.org/1998/Math/MathML"	5.3	4
29	display="inline" id="d1e544" altimg="si6.svg"> <mmi:mrow><mmi:msub><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:msub></mmi:mrow> <td><mml:mi 6.1</mml:mi </td> <td>3</td>	<mml:mi 6.1</mml:mi 	3
30	Influence study of bottom cycle ratios and superheat for vessels waste heat cascade recovery based on TEG-ORC combined cycle system employing R245fa. International Journal of Green Energy, 2023, 20, 734-743.	3.8	2
31	Study on characteristics of particulate emission of diesel aftertreatment with reciprocating flow. Energy Science and Engineering, 2021, 9, 535-547.	4.0	1
32	Characterization of WMnCeTiOx catalysts prepared by different methods for the selective reduction of NO with NH3. New Journal of Chemistry, 2021, 45, 19456-19466.	2.8	1