Dongqin Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2397885/publications.pdf

Version: 2024-02-01

		159358	197535
55	2,464	30	49
papers	citations	h-index	g-index
			0001
56	56	56	2821
all docs	docs citations	times ranked	citing authors
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A. Biosensors and Bioelectronics, 2015, 65, 295-301.	5.3	181
2	Bioaccumulation and Trophic Transfer of Short Chain Chlorinated Paraffins in a Marine Food Web from Liaodong Bay, North China. Environmental Science & Environmental Science & 2014, 48, 5964-5971.	4.6	160
3	Environmental Occurrence and Distribution of Short Chain Chlorinated Paraffins in Sediments and Soils from the Liaohe River Basin, P. R. China. Environmental Science & Echnology, 2012, 46, 3771-3778.	4.6	151
4	Emissions of PCDD/Fs from municipal solid waste incinerators in China. Chemosphere, 2009, 75, 1153-1158.	4.2	145
5	Nanographene-based tyrosinase biosensor for rapid detection of bisphenol A. Biosensors and Bioelectronics, 2012, 35, 193-199.	5.3	135
6	Development of biosensor technologies for analysis of environmental contaminants. Trends in Environmental Analytical Chemistry, 2014, 2, 25-32.	5. 3	96
7	Effects of Short-Chain Chlorinated Paraffins Exposure on the Viability and Metabolism of Human Hepatoma HepG2 Cells. Environmental Science & Technology, 2015, 49, 3076-3083.	4.6	88
8	Highly selective dummy molecularly imprinted polymer as a solid-phase extraction sorbent for five bisphenols in tap and river water. Journal of Chromatography A, 2014, 1343, 33-41.	1.8	79
9	Highly class-selective solid-phase extraction of bisphenols in milk, sediment and human urine samples using well-designed dummy molecularly imprinted polymers. Journal of Chromatography A, 2014, 1360, 9-16.	1.8	72
10	Response Characteristics of Bisphenols on a Metal–Organic Framework-Based Tyrosinase Nanosensor. ACS Applied Materials & Date: ACS ACS Applied Materials & Date: ACS	4.0	72
11	Advances in sensing and biosensing of bisphenols: A review. Analytica Chimica Acta, 2018, 998, 1-27.	2.6	66
12	Determination of nine bisphenols in sewage and sludge using dummy molecularly imprinted solid-phase extraction coupled with liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 2018, 1552, 10-16.	1.8	59
13	Developmental and metabolic responses of zebrafish (Danio rerio) embryos and larvae to short-chain chlorinated paraffins (SCCPs) exposure. Science of the Total Environment, 2018, 622-623, 214-221.	3.9	56
14	Congener-specific distribution and bioaccumulation of short-chain chlorinated paraffins in sediments and bivalves of the Bohai Sea, China. Marine Pollution Bulletin, 2014, 79, 299-304.	2.3	53
15	Electrochemical biosensing platform based on amino acid ionic liquid functionalized graphene for ultrasensitive biosensing applications. Biosensors and Bioelectronics, 2014, 62, 134-139.	5.3	51
16	Comparing the disrupting effects of short-, medium- and long-chain chlorinated Paraffins on cell viability and metabolism. Science of the Total Environment, 2019, 685, 297-307.	3.9	51
17	Short-chain chlorinated paraffins (SCCPs) induced thyroid disruption by enhancement of hepatic thyroid hormone influx and degradation in male Sprague Dawley rats. Science of the Total Environment, 2018, 625, 657-666.	3.9	49
18	Integration of metabolomics and transcriptomics reveals short-chain chlorinated paraffin-induced hepatotoxicity in male Sprague-Dawley rat. Environment International, 2019, 133, 105231.	4.8	48

#	Article	IF	Citations
19	Concentrations of short- and medium-chain chlorinated paraffins in indoor dusts from malls in China: Implications for human exposure. Chemosphere, 2017, 172, 103-110.	4.2	45
20	Multiresidue determination and potential risks of emerging pesticides in aquatic products from Northeast China by LC–MS/MS. Journal of Environmental Sciences, 2018, 63, 116-125.	3.2	44
21	Diurnal variations of atmospheric polycyclic aromatic hydrocarbons (PAHs) during three sequent winter haze episodes in Beijing, China. Science of the Total Environment, 2018, 625, 1486-1493.	3.9	43
22	Robust Single-Molecule Enzyme Nanocapsules for Biosensing with Significantly Improved Biosensor Stability. Analytical Chemistry, 2020, 92, 5830-5837.	3.2	41
23	Partitioning and removal behaviors of PCDD/Fs, PCBs and PCNs in a modern municipal solid waste incineration system. Science of the Total Environment, 2020, 735, 139134.	3.9	39
24	Dummy molecularly imprinted solid phase extraction of climbazole from environmental water samples. Talanta, 2019, 196, 47-53.	2.9	38
25	Co3O4 nanoparticles supported mesoporous carbon framework interface for glucose biosensing. Talanta, 2019, 203, 112-121.	2.9	37
26	Controlled Manipulation of Metal–Organic Framework Layers to Nanometer Precision Inside Large Mesochannels of Ordered Mesoporous Silica for Enhanced Removal of Bisphenol A from Water. ACS Applied Materials & Discrete Applied & Discrete Appl	4.0	36
27	Molecular characterization of dissolved organic matters in winter atmospheric fine particulate matters (PM2.5) from a coastal city of northeast China. Science of the Total Environment, 2019, 689, 312-321.	3.9	35
28	Bioaccumulation and human health implications of essential and toxic metals in freshwater products of Northeast China. Science of the Total Environment, 2019, 673, 768-776.	3.9	33
29	Validation of a HRGC–ECNI/LRMS method to monitor short-chain chlorinated paraffins in human plasma. Journal of Environmental Sciences, 2019, 75, 289-295.	3.2	33
30	Formation and Emission of PCDD/Fs in Chinese Non-Wood Pulp and Paper Mills. Environmental Science & Eamp; Technology, 2012, 46, 12234-12240.	4.6	32
31	Spatial variation of PCDD/F and PCB emissions and their composition profiles in stack flue gas from the typical cement plants in China. Chemosphere, 2018, 195, 491-497.	4.2	30
32	Short-chain chlorinated paraffins (SCCPs) disrupt hepatic fatty acid metabolism in liver of male rat via interacting with peroxisome proliferator-activated receptor $\hat{l}\pm$ (PPAR $\hat{l}\pm$). Ecotoxicology and Environmental Safety, 2019, 181, 164-171.	2.9	30
33	Multifunctionalized mesoporous silica as an efficient reversed-phase/anion exchange mixed-mode sorbent for solid-phase extraction of four acidic nonsteroidal anti-inflammatory drugs in environmental water samples. Journal of Chromatography A, 2017, 1527, 10-17.	1.8	29
34	Amino Acid Ionic Liquid Modified Mesoporous Carbon: A Tailorâ€made Nanostructure Biosensing Platform. ChemSusChem, 2012, 5, 1918-1925.	3.6	27
35	Multi-omics analysis to reveal disorders of cell metabolism and integrin signaling pathways induced by PM2.5. Journal of Hazardous Materials, 2022, 424, 127573.	6.5	25
36	Solid-phase extraction based on a molecularly imprinted polymer for the selective determination of four benzophenones in tap and river water. Journal of Separation Science, 2015, 38, 3412-3420.	1.3	22

#	Article	IF	Citations
37	Controllable growth of ZIF-8 layers with nanometer-level precision on SiO2 nano-powders via liquid phase epitaxy stepwise growth approach. Microporous and Mesoporous Materials, 2018, 268, 268-275.	2.2	21
38	Hyperbranched mixed-mode anion-exchange polymeric sorbent for highly selective extraction of nine acidic non-steroidal anti-inflammatory drugs from human urine. Talanta, 2018, 190, 15-22.	2.9	20
39	Occurrence, accumulation, and health risks of heavy metals in Chinese market baskets. Science of the Total Environment, 2022, 829, 154597.	3.9	20
40	Phenyltrichlorosilane-functionalized magnesium oxide microspheres: Preparation, characterization and application for the selective extraction of dioxin-like polycyclic aromatic hydrocarbons in soils with matrix solid-phase dispersion. Analytica Chimica Acta, 2017, 956, 14-23.	2.6	19
41	Electrophilic Chlorination of Naphthalene in Combustion Flue Gas. Environmental Science & Emp; Technology, 2019, 53, 5741-5749.	4.6	18
42	Kinetics of PCDD/Fs Formation from Non-Wood Pulp Bleaching with Chlorine. Environmental Science & Environmental & Envi	4.6	17
43	Sources and health risks of PM2.5-bound polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in a North China rural area. Journal of Environmental Sciences, 2020, 95, 240-247.	3.2	17
44	Preparation of a reversed-phase/anion-exchange mixed-mode spherical sorbent by Pickering emulsion polymerization for highly selective solid-phase extraction of acidic pharmaceuticals from wastewater. Journal of Chromatography A, 2017, 1521, 1-9.	1.8	15
45	Levels and fingerprints of chlorinated aromatic hydrocarbons in fly ashes from the typical industrial thermal processes: Implication for the co-formation mechanism. Chemosphere, 2019, 224, 298-305.	4.2	15
46	Effect of short-chain chlorinated paraffins on metabolic profiling of male SD rats. Science of the Total Environment, 2021, 750, 141404.	3.9	12
47	Exposure to short-chain chlorinated paraffins inhibited PPARα-mediated fatty acid oxidation and stimulated aerobic glycolysis in vitro in human cells. Science of the Total Environment, 2021, 772, 144957.	3.9	12
48	The effect of toxic components on metabolomic response of male SD rats exposed to fine particulate matter. Environmental Pollution, 2021, 272, 115922.	3.7	11
49	Synergistic effect of mixed Cu and Fe oxides and chlorides on electrophilic chlorination of dibenzo-p-dioxin and dibenzofuran. Science of the Total Environment, 2020, 721, 137563.	3.9	9
50	Mass balance and elimination mechanism of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) during the kraft pulping process. Journal of Hazardous Materials, 2020, 398, 122819.	6.5	7
51	Polychlorinated dibenzo-p-dioxin and dibenzofuran precursors and formation mechanisms during non-woodpulp chlorine bleaching process. Chemosphere, 2018, 211, 1-9.	4.2	6
52	Mechanistic aspects of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) formation from chlorine bleaching of non-wood pulp. Journal of Hazardous Materials, 2020, 386, 121652.	6. 5	6
53	Characteristics of PAHs, PCDD/Fs, PCBs and PCNs in atmospheric fine particulate matter in Dalian, China. Chemosphere, 2022, 288, 132488.	4.2	5
54	Magnetic magnesium oxide composites for rapid removal of polycyclic aromatic hydrocarbons and cadmium ions from water. Environmental Chemistry, 2020, 17, 479.	0.7	3

#	Article	IF	CITATIONS
55	Effect of urea on chlorinated aromatics formation mediated by copper and iron species in combustion flue gas. Chemosphere, 2021, 280, 130963.	4.2	0