Suprakas Sinha Ray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2397853/publications.pdf

Version: 2024-02-01

527 papers

27,929 citations

73
h-index

153 g-index

575 all docs 575
docs citations

575 times ranked

20227 citing authors

#	Article	IF	CITATIONS
1	Foamability of multiphase polymeric materials. , 2022, , 177-208.		О
2	Foam manufacturing technologies. , 2022, , 17-35.		0
3	Degradation studies of biodegradable foams. , 2022, , 243-265.		O
4	Foamability of thermoplastics. , 2022, , 79-175.		O
5	The science behind foaming., 2022,, 37-78.		1
6	Introduction to polymer foams and foaming. , 2022, , 1-16.		1
7	Application of Surface-Modified Electrode Materials in Wastewater Treatment. Engineering Materials, 2022, , 107-119.	0.3	O
8	Electromagnetic interference cognizance and potential of advanced polymer composites toward electromagnetic interference shielding: A review. Polymer Engineering and Science, 2022, 62, 591-621.	1.5	35
9	On energy storage capacity of conductive MXene hybrid nanoarchitectures. Journal of Energy Storage, 2022, 45, 103686.	3.9	30
10	Construction of heterojunctions CeO2 interfaced Nb, Sn, Ti, Mo and Zn metal oxide catalysts for photocatalytic oxidation of α-pinene inert C-H. Inorganic Chemistry Communication, 2022, 137, 109199.	1.8	6
11	Granular morphology, molecular structure and thermal stability of infrared heat-moisture treated maize starch with added lipids. Food Chemistry, 2022, 382, 132342.	4.2	8
12	Science and technology of polylactide. , 2022, , 31-49.		0
13	Fundamentals of polymer blend technology. , 2022, , 79-125.		1
14	Polylactide/poly(butylene succinate) blends. , 2022, , 329-351.		0
15	Mechanical models for polymer blends. , 2022, , 179-186.		O
16	Nanocellulose-Graphene Oxide-Based Nanocomposite for Adsorptive Water Treatment. Springer Series in Materials Science, 2022, , 1-53.	0.4	2
17	Synthesis, properties, advantages, and challenges of bio-based and biodegradable polymers used for the preparation of blends with polylactide., 2022,, 51-78.		1
18	Polylactide/starch blends. , 2022, , 229-249.		0

#	Article	IF	Citations
19	Market, current and future applications. , 2022, , 413-421.		О
20	Polylactide/poly[(butylene succinate)-co-adipate] blends., 2022,, 353-373.		0
21	Techniques for structural and morphological characterization of polymer blends. , 2022, , 139-177.		0
22	Terminology and dimensions of sustainability, life cycle assessment, and characteristics of sustainable polymer materials., 2022, , 17-29.		0
23	Conclusions, challenges, and future outlook. , 2022, , 423-427.		0
24	Processing technologies for polylactide-based blends. , 2022, , 127-138.		0
25	Prospect of DFT Utilization in Polymer-Graphene Composites for Electromagnetic Interference Shielding Application: A Review. Polymers, 2022, 14, 704.	2.0	8
26	Effect of Borophene and Graphene on the Elastic Modulus of PEDOT:PSS Filmâ€"A Finite Element Study. Condensed Matter, 2022, 7, 22.	0.8	7
27	Facile scalable synthesis of graphene oxide and reduced graphene oxide: comparative investigation of different reduction methods. Carbon Letters, 2022, 32, 1031-1046.	3.3	11
28	Sustainability and Life Cycle Assessment of Thermoplastic Polymers for Packaging: A Review on Fundamental Principles and Applications. Macromolecular Materials and Engineering, 2022, 307, .	1.7	19
29	Lignin and Keratin-Based Materials in Transient Devices and Disposables: Recent Advances Toward Materials and Environmental Sustainability. ACS Omega, 2022, 7, 10854-10863.	1.6	8
30	Properties of thermoplastic maize starch-zein composite films prepared by extrusion process under alkaline conditions. International Journal of Biological Macromolecules, 2022, 208, 443-452.	3.6	13
31	Multi-functioning of CeO2-SnO2 heterostructure as room temperature ferromagnetism and chemiresistive sensors. Journal of Alloys and Compounds, 2022, 906, 164317.	2.8	16
32	Viscoelastic, Thermal, and Mechanical Properties of Melt-Processed Poly (Îμ-Caprolactone) (PCL)/Hydroxyapatite (HAP) Composites. Materials, 2022, 15, 104.	1.3	12
33	An investigation of copper oxide-loaded reduced graphene oxide nanocomposite for energy storage applications. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	15
34	Recent developments and future perspectives of biorenewable nanocomposites for advanced applications. Nanotechnology Reviews, 2022, 11, 1696-1721.	2.6	11
35	Effect of boehmite alumina nanoparticles on the physical and chemical characteristics of eco-friendly sodium alginate/polyvinyl alcohol bio-nanocomposite film. International Journal of Polymer Analysis and Characterization, 2022, 27, 236-251.	0.9	1
36	Functionalization of 2D MoS2 Nanosheets with Various Metal and Metal Oxide Nanostructures: Their Properties and Application in Electrochemical Sensors. Biosensors, 2022, 12, 386.	2.3	18

#	Article	IF	CITATIONS
37	Celluloseâ€Based Sustainable Composites: A Review of Systems for Applications in EMI Shielding and Sensors. Macromolecular Materials and Engineering, 2022, 307, .	1.7	10
38	Sustainable Macromolecular Materials and Engineering. Macromolecular Materials and Engineering, 2022, 307, .	1.7	2
39	Layered Double Hydroxides for Sustainable Agriculture and Environment: An Overview. ACS Omega, 2022, 7, 20428-20440.	1.6	21
40	Nanoparticle-Enhanced \hat{I}^2 -Phase Formation in Electroactive PVDF Composites: A Review of Systems for Applications in Energy Harvesting, EMI Shielding, and Membrane Technology. ACS Applied Nano Materials, 2022, 5, 7632-7651.	2.4	53
41	Fabrication and Model Characterization of the Electrical Conductivity of PVA/PPy/rGO Nanocomposite. Molecules, 2022, 27, 3696.	1.7	9
42	Facile solvent/drying fabrication of PVA/PPy/rGO: A novel nanocomposite for energy storage applications. Results in Materials, 2022, 15, 100295.	0.9	6
43	Theoretical analysis of borophene for lithium ion electrode. Materials Today: Proceedings, 2021, 38, 485-489.	0.9	4
44	Investigation of graphene loaded polypyrrole for lithium-ion battery. Materials Today: Proceedings, 2021, 38, 635-638.	0.9	20
45	Rheology and foaming behaviour of styrene–ethylene–butylene–styrene nanocomposites. Colloid and Polymer Science, 2021, 299, 481-496.	1.0	9
46	Synthesis methods of borophene, graphene-loaded polypyrrole nanocomposites and their benefits for energy storage applications: A brief overview. FlatChem, 2021, 26, 100211.	2.8	33
47	Nanocomposites of PEDOT:PSS with Graphene and its Derivatives for Flexible Electronic Applications: A Review. Macromolecular Materials and Engineering, 2021, 306, 2000716.	1.7	62
48	An overview of the recent advances in polylactideâ€based sustainable nanocomposites. Polymer Engineering and Science, 2021, 61, 617-649.	1.5	56
49	Nanocellulosics: Benign, Sustainable, and Ubiquitous Biomaterials for Water Remediation. ACS Omega, 2021, 6, 4511-4526.	1.6	29
50	Influence of nucleation and growth mechanisms on the heat deflection temperature of a reactively processed polypropylene nanocomposite. Polymer Engineering and Science, 2021, 61, 1195-1208.	1.5	5
51	Computational Study of Graphene–Polypyrrole Composite Electrical Conductivity. Nanomaterials, 2021, 11, 827.	1.9	5
52	Electro-Fenton Degradation of Selected Antiretroviral Drugs Using a Low-Cost Iron-Modified Carbon-Cloth Electrode. Electrocatalysis, 2021, 12, 327-339.	1.5	8
53	Investigation and Modeling of the Electrical Conductivity of Graphene Nanoplatelets-Loaded Doped-Polypyrrole. Polymers, 2021, 13, 1034.	2.0	22
54	Electrical resistance control model for polypyrrole-graphene nanocomposite: Energy storage applications. Materials Today Communications, 2021, 26, 101699.	0.9	12

#	Article	IF	Citations
55	Pathogenesis of Keratinocyte Carcinomas and the Therapeutic Potential of Medicinal Plants and Phytochemicals. Molecules, 2021, 26, 1979.	1.7	10
56	Iron Sulfide Functionalized Polyaniline Nanocomposite for the Removal of Eosin Y from Water: Equilibrium and Kinetic Studies. Polymer Science - Series B, 2021, 63, 304-313.	0.3	2
57	MoS ₂ Nanosheet/ZnS Composites for the Visible-Light-Assisted Photocatalytic Degradation of Oxytetracycline. ACS Applied Nano Materials, 2021, 4, 4721-4734.	2.4	61
58	Top-down synthesis of graphene: A comprehensive review. FlatChem, 2021, 27, 100224.	2.8	143
59	Flow Characteristics, Mechanical, Thermal, and Thermomechanical Properties, and 3D Printability of Biodegradable Polylactide Containing Boehmite at Different Loadings. Polymers, 2021, 13, 2019.	2.0	7
60	Structural and digestibility properties of infrared heat-moisture treated maize starch complexed with stearic acid. International Journal of Biological Macromolecules, 2021, 180, 559-569.	3.6	9
61	Bismuth Molybdate Nanoplates Supported on Reduced Graphene Oxide: An Effective Nanocomposite for the Removal of Naphthalene via Adsorption–Photodegradation. ACS Omega, 2021, 6, 16783-16794.	1.6	22
62	Influence of nanoparticles and their selective localization on the structure and properties of polylactide-based blend nanocomposites. Composites Part B: Engineering, 2021, 215, 108845.	5.9	54
63	Plastic Pollution: A Perspective on Matters Arising: Challenges and Opportunities. ACS Omega, 2021, 6, 19343-19355.	1.6	73
64	Synthetic Biopolymers and Their Composites: Advantages and Limitationsâ€"An Overview. Macromolecular Rapid Communications, 2021, 42, e2100130.	2.0	79
65	Morphological, Thermal, and Mechanical Properties of Electrospun Recycled Poly(ethylene) Tj ETQq $1\ 1\ 0.78431$	4 rgBT /Ov	verlock 10 Tf 5
66	The effect of expanded graphite/clay nanoparticles on thermal, rheological, and fireâ€retardant properties of poly(butylene succinate). Polymer Composites, 2021, 42, 6370-6382.	2.3	6
67	A review on the processing–morphology–property relationship in biodegradable polymer composites containing carbon nanotubes and nanofibers. Polymer Engineering and Science, 2021, 61, 2719-2756.	1.5	14
68	Recent progress on 2D metal carbide/nitride (MXene) nanocomposites for lithium-based batteries. FlatChem, 2021, 29, 100281.	2.8	20
69	Structure-property relationship and nascent applications of thermoelectric PEDOT:PSS/carbon composites: A review. Composites Communications, 2021, 27, 100890.	3.3	16
70	Synthesis and characterization of gold nanoparticles biosynthesised from Aspalathus linearis (Burm.f.) R.Dahlgren For progressive macular hypomelanosis. Journal of Herbal Medicine, 2021, 29, 100481.	1.0	3
71	The effect of electrically conducting carbon materials on the conductivity and morphology of poly(vinyl butyral) and chitosan blend composite for application in anti-corrosive coatings. Synthetic Metals, 2021, 281, 116914.	2.1	3
72	Mechanical properties of cellulose nanofibril papers and their bionanocomposites: A review. Carbohydrate Polymers, 2021, 273, 118507.	5.1	60

#	Article	IF	CITATIONS
73	Comparative study of graphene-polypyrrole and borophene-polypyrrole composites: molecular dynamics modeling approach. Engineering Solid Mechanics, 2021, 9, 311-322.	0.6	4
74	Recent Progress in Modified Polymer-Based PPE in Fight Against COVID-19 and Beyond. ACS Omega, 2021, 6, 28463-28470.	1.6	11
75	Cannabidiol-Mediated Green Synthesis, Characterization, and Cytotoxicity of Metal Nanoparticles in Human Keratinocyte Cells. ACS Omega, 2021, 6, 29078-29090.	1.6	10
76	Dielectrorheology of Aspect-Ratio-Tailored Carbon Nanotube/Polyethylene Composites under Large Deformations: Implications for High-Temperature Dielectrics. ACS Applied Nano Materials, 2021, 4, 11493-11504.	2.4	11
77	Bamboos: From Bioresource to Sustainable Materials and Chemicals. Sustainability, 2021, 13, 12200.	1.6	14
78	Polyamidoamine-Drug Conjugates Containing Metal-Based Anticancer Compounds. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 1503-1518.	1.9	6
79	Removal of naphthalene from simulated wastewater through adsorption-photodegradation by ZnO/Ag/GO nanocomposite. Journal of Industrial and Engineering Chemistry, 2020, 81, 393-404.	2.9	89
80	Physicochemical and in vitro cytotoxicity evaluation of polymeric drugs for combination cancer therapy. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 1134-1148.	1.8	4
81	Effect of organically modified layered double hydroxides on the properties of poly(lactic) Tj ETQq1 1 0.784314 rgB 137, 48654.	T /Overloc 1.3	ck 10 Tf 50 7
82	Morphological characteristics and thermal, rheological, and mechanical properties of cellulose nanocrystalsâ€containing biodegradable poly(lactic acid)/poly(l̂µâ€caprolactone) blend composites. Journal of Applied Polymer Science, 2020, 137, 48665.	1.3	14
83	Development, characterization, and <i>in vitro</i> evaluation of water soluble poloxamer/pluronicâ€mastic gumâ€gum acaciaâ€based wound dressing. Journal of Applied Polymer Science, 2020, 137, 48728.	1.3	13
84	UVâ€protection, tribology, and mechanical properties of ZnOâ€containing polyamide composites. Journal of Applied Polymer Science, 2020, 137, 48418.	1.3	9
85	Fundamentals of immiscible polymer blends. , 2020, , 65-80.		4
86	Effects associated with constituents. , 2020, , 143-159.		1
87	Processing techniques and structural and morphological characterization. , 2020, , 81-98.		O
88	Halogen-Free Flame-Retardant Polymers. Springer Series in Materials Science, 2020, , .	0.4	7
89	Recent advances in carbon nanomaterial-based adsorbents for water purification. Coordination Chemistry Reviews, 2020, 405, 213111.	9.5	329
90	Materials Science Challenges in Skin UV Protection: A Review. Photochemistry and Photobiology, 2020, 96, 779-797.	1.3	84

#	Article	IF	Citations
91	Performance of bismuth-based materials for supercapacitor applications: A review. Materials Today Communications, 2020, 25, 101691.	0.9	29
92	Adsorption in the context of water purification. , 2020, , 67-100.		6
93	Zero-dimensional carbon nanomaterials-based adsorbents., 2020,, 181-193.		0
94	One-dimensional carbon nanomaterials-based adsorbents. , 2020, , 195-224.		8
95	Two-dimensional carbon nanomaterials-based adsorbents. , 2020, , 225-273.		2
96	Multifunctional three-dimensional carbon nanomaterials-based adsorbents., 2020,, 275-296.		0
97	Design of Poly(cyclotriphosphazene)-Functionalized Zirconium Phosphate Nanoplatelets To Simultaneously Enhance the Dynamic Mechanical and Flame Retardancy Properties of Polyamide 6. ACS Omega, 2020, 5, 13867-13877.	1.6	7
98	Regeneration and recyclability of carbon nanomaterials after adsorption., 2020,, 349-363.		1
99	Water purification using various technologies and their advantages and disadvantages. , 2020, , 37-66.		4
100	Carbon nanomaterials: synthesis, functionalization, and properties., 2020,, 137-179.		4
101	Biopolymer-functionalized carbon nanomaterials–based adsorbents. , 2020, , 297-326.		0
102	Carbon-based nano/micromotors for adsorption. , 2020, , 341-347.		0
103	Toxicity of carbon nanomaterials. , 2020, , 365-385.		0
104	Outlook and future research, development, and innovation directions., 2020,, 387-392.		0
105	Statistical characterization and simulation of graphene-loaded polypyrrole composite electrical conductivity. Journal of Materials Research and Technology, 2020, 9, 15788-15801.	2.6	22
106	Polypyrrole-coated gum ghatti-grafted poly(acrylamide) composite for the selective removal of hexavalent chromium from waste water. International Journal of Biological Macromolecules, 2020, 164, 2851-2860.	3.6	17
107	Effect of reaction parameters on the adsorption. , 2020, , 119-135.		3
108	Conducting polymer-functionalized carbon nanomaterials-based adsorbents., 2020,, 327-340.		1

#	Article	IF	Citations
109	Adsorption equilibrium isotherms, kinetics and thermodynamics. , 2020, , 101-118.		19
110	Classification of water contaminants. , 2020, , 11-36.		6
111	Polymer-Based Membranes and Composites for Safe, Potable, and Usable Water: A Survey of Recent Advances. Chemistry Africa, 2020, 3, 593-608.	1.2	15
112	Effect of nanofillers characteristics and their selective localization on morphology development and rheological properties of meltâ€processed polylactide/poly(butylene adipateâ€coâ€terephthalate) blend composites. Polymer Engineering and Science, 2020, 60, 2749-2760.	1.5	33
113	Foamability and Special Applications of Microcellular Thermoplastic Polymers: A Review on Recent Advances and Future Direction. Macromolecular Materials and Engineering, 2020, 305, 2000366.	1.7	46
114	Polypyrrole-Promoted rGO–MoS ₂ Nanocomposites for Enhanced Photocatalytic Conversion of CO ₂ and H ₂ O to CO, CH ₄ , and H ₂ Products. ACS Applied Energy Materials, 2020, 3, 9897-9909.	2.5	61
115	Morphology Modulated Photocatalytic Activity of CeO ₂ Nanostructures for Selective Oxidation of Biobased Alphaâ€Pinene to Oxygenates. ChemistrySelect, 2020, 5, 12940-12951.	0.7	9
116	Characterization of pre-gelatinized maize starch-zein blend films produced at alkaline pH. Journal of Cereal Science, 2020, 95, 103083.	1.8	14
117	Synthesis and Application of MnO2/Exfoliated Graphite Electrodes for Enhanced Photoelectrochemical Degradation of Methylene Blue and Congo Red Dyes in Water. Electrocatalysis, 2020, 11, 413-421.	1.5	3
118	The Role of Two-Step Blending in the Properties of Starch/Chitin/Polylactic Acid Biodegradable Composites for Biomedical Applications. Polymers, 2020, 12, 592.	2.0	14
119	Shear-Induced Carbon Nanotube Migration and Morphological Development in Polylactide/Poly(vinylidene fluoride) Blend Nanocomposites and Their Impact on Dielectric Constants and Rheological Properties. Journal of Physical Chemistry C, 2020, 124, 9536-9547.	1.5	29
120	Supramolecular Poly(cyclotriphosphazene) Functionalized Graphene Oxide/Polypropylene Composites with Simultaneously Improved Thermal Stability, Flame Retardancy, and Viscoelastic Properties. Macromolecular Materials and Engineering, 2020, 305, 2000207.	1.7	9
121	Sustainable Chemicals: A Brief Survey of the Furans. Chemistry Africa, 2020, 3, 481-496.	1.2	26
122	Plastics in municipal drinking water and wastewater treatment plant effluents: challenges and opportunities for South Africa—a review. Environmental Science and Pollution Research, 2020, 27, 12953-12966.	2.7	29
123	Distribution of nanoclay in a new TPV/nanoclay composite prepared through dynamic vulcanization. Polymer Testing, 2020, 83, 106374.	2.3	14
124	Removal of Congo red from aqueous solution by adsorption using gum ghatti and acrylamide graft copolymer coated with zero valent iron. International Journal of Biological Macromolecules, 2020, 149, 21-30.	3.6	32
125	Effect of mixing conditions (dynamic process). , 2020, , 107-142.		3
126	Migration vs. properties including the hybrid effect. , 2020, , 161-208.		1

#	Article	IF	Citations
127	Overview of nanoparticles and their surface modification. , 2020, , 29-64.		1
128	Fundamental definition and importance of nanomaterials, nanostructured, and bulk nanostructured materials., 2020, , 15-28.		2
129	Temperature-dependent response to C3H7OH and C2H5OH vapors induced by deposition of Au nanoparticles on SnO2/NiO hollow sphere-based conductometric sensors. Sensors and Actuators B: Chemical, 2020, 316, 128041.	4.0	36
130	Heterostructured CeO ₂ â€"M (M = Co, Cu, Mn, Fe, Ni) Oxide Nanocatalysts for the Visible-Light Photooxidation of Pinene to Aroma Oxygenates. ACS Omega, 2020, 5, 9775-9788.	1.6	30
131	Types of Flame Retardants Used for the Synthesis of Flame-Retardant Polymers. Springer Series in Materials Science, 2020, , 15-45.	0.4	1
132	Morphological, thermal, and thermomechanical properties of cellulose nanocrystals reinforced polylactide/poly [(butylene succinate)-co-adipate] blend composite foams. Functional Composite Materials, 2020, 1, .	0.9	4
133	Flame-Retardant Polyurethanes. Springer Series in Materials Science, 2020, , 47-67.	0.4	0
134	Melt-Dripping and Char Formation. Springer Series in Materials Science, 2020, , 69-82.	0.4	0
135	Polymer Nanocomposites for Fire Retardant Applications. Springer Series in Materials Science, 2020, , 83-109.	0.4	0
136	The modified logistic model for polymer-composites electrical conductivity prediction. AIP Conference Proceedings, 2020, , .	0.3	1
137	Synthesis and Fabrication of Photoactive Nanocomposites Electrodes for the Degradation of Wastewater Pollutants. Engineering Materials, 2020, , 19-38.	0.3	0
138	Synthesis of Porous Organic Polymer-Based Solid-Acid Catalysts for 5-Hydroxymethylfurfural Production from Fructose. Catalysts, 2019, 9, 656.	1.6	10
139	Designing SnO ₂ Nanostructure-Based Sensors with Tailored Selectivity toward Propanol and Ethanol Vapors. ACS Omega, 2019, 4, 13696-13709.	1.6	50
140	Cellulose Nanostructure-Based Biodegradable Nanocomposite Foams: A Brief Overview on the Recent Advancements and Perspectives. Polymers, 2019, 11, 1270.	2.0	30
141	Efficient Removal of Pb(II) and Cd(II) from Industrial Mine Water by a Hierarchical MoS ₂ /SH-MWCNT Nanocomposite. ACS Omega, 2019, 4, 13922-13935.	1.6	133
142	Fabrication of Bimetal CuFe2O4 Oxide Redox-Active Nanocatalyst for Oxidation of Pinene to Renewable Aroma Oxygenates. Nanomaterials, 2019, 9, 1140.	1.9	17
143	Kinetically Controlled Localization of Carbon Nanotubes in Polylactide/Poly(vinylidene fluoride) Blend Nanocomposites and Their Influence on Electromagnetic Interference Shielding, Electrical Conductivity, and Rheological Properties. Journal of Physical Chemistry C, 2019, 123, 19195-19207.	1.5	40
144	A highly responsive NH3 sensor based on Pd-loaded ZnO nanoparticles prepared via a chemical precipitation approach. Scientific Reports, 2019, 9, 9881.	1.6	88

#	Article	IF	CITATIONS
145	Polymer-drug conjugates containing antimalarial drugs and antibiotics. Journal of Drug Delivery Science and Technology, 2019, 53, 101171.	1.4	20
146	Parametric Analysis of Electrical Conductivity of Polymer-Composites. Polymers, 2019, 11, 1250.	2.0	39
147	Properties and Characterization of a PLA–Chitin–Starch Biodegradable Polymer Composite. Polymers, 2019, 11, 1656.	2.0	35
148	Cure kinetics, morphology development, and rheology of a high-performance carbon-fiber-reinforced epoxy composite. Composites Part B: Engineering, 2019, 176, 107300.	5.9	32
149	Hierarchically Porous Cu-, Co-, and Mn-Doped Platelet-Like ZnO Nanostructures and Their Photocatalytic Performance for Indoor Air Quality Control. ACS Omega, 2019, 4, 16429-16440.	1.6	42
150	Curing epoxy with polyvinylpyrrolidone (PVP) surface-functionalized NixFe3-xO4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105259.	1.9	14
151	Thermal and rheological properties of polyamide 6/layered double hydroxide clay composites. Polymers and Polymer Composites, 2019, 27, 567-581.	1.0	6
152	Mechanism of Thermal Degradation-Induced Gel Formation in Polyamide 6/Ethylene Vinyl Alcohol Blend Nanocomposites Studied by Time-Resolved Rheology and Hyphenated Thermogravimetric Analyzer Fourier Transform Infrared Spectroscopy Mass Spectroscopy: Synergistic Role of Nanoparticles and Maleic-anhydride-Grafted Polypropylene. ACS Omega, 2019, 4, 9569-9582.	1.6	10
153	Thermal Stability, Pyrolysis Behavior, and Fire-Retardant Performance of Melamine Cyanurate@Poly(cyclotriphosphazene- <i>co</i> -4,4′-sulfonyl diphenol) Hybrid Nanosheet-Containing Polyamide 6 Composites. ACS Omega, 2019, 4, 9615-9628.	1.6	30
154	Achieving Controllable MoS ₂ Nanostructures with Increased Interlayer Spacing for Efficient Removal of Pb(II) from Aquatic Systems. ACS Applied Materials & English Samp; Interfaces, 2019, 11, 19141-19155.	4.0	109
155	Development of TiO2-Carbon Composite Acid Catalyst for Dehydration of Fructose to 5-Hydroxymethylfurfural. Catalysts, 2019, 9, 126.	1.6	18
156	Nanostructured Zn-Ti layered double hydroxides with reduced photocatalytic activity for sunscreen application. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	13
157	Effects of stearic acid and irradiation alone and in combination on properties of amylose-lipid nanomaterial from high amylose maize starch. Carbohydrate Polymers, 2019, 212, 352-360.	5.1	14
158	Pasting properties of hydrothermally treated maize starch with added stearic acid. Food Chemistry, 2019, 289, 396-403.	4.2	22
159	Rheology of poly (lactic acid)-based systems. Polymer Reviews, 2019, 59, 465-509.	5.3	101
160	Detailed understanding on the relation of various pH and synthesis reaction times towards a prominent low temperature H2S gas sensor based on ZnO nanoplatelets. Results in Physics, 2019, 12, 2189-2201.	2.0	22
161	Correlations between Fibre Diameter, Physical Parameters, and the Mechanical Properties of Randomly Oriented Biobased Polylactide Nanofibres. Fibers and Polymers, 2019, 20, 100-112.	1.1	20
162	Enhanced Thermoâ€Mechanical Stiffness, Thermal Stability, and Fire Retardant Performance of Surfaceâ€Modified 2D MoS ₂ Nanosheetâ€Reinforced Polyurethane Composites. Macromolecular Materials and Engineering, 2019, 304, 1800562.	1.7	22

#	Article	IF	Citations
163	Enzymatic degradation, electronic, and thermal properties of graphite†and graphene oxideâ€filled biodegradable polylactide/poly(εâ€caprolactone) blend composites. Journal of Applied Polymer Science, 2019, 136, 47387.	1.3	7
164	Are nanoclayâ€containing polymer composites safe for food packaging applications?—An overview. Journal of Applied Polymer Science, 2019, 136, 47214.	1.3	34
165	Characteristics of point defects on the room temperature ferromagnetic and highly NO2 selectivity gas sensing of p-type Mn3O4 nanorods. Sensors and Actuators B: Chemical, 2019, 285, 92-107.	4.0	82
166	Photocatalytic activity of Gd2O2CO3·ZnO·CuO nanocomposite used for the degradation of phenanthrene. SN Applied Sciences, 2019, 1, 1.	1.5	30
167	Polyethylene glycol–gum acacia-based multidrug delivery system for controlled delivery of anticancer drugs. Polymer Bulletin, 2019, 76, 5011-5037.	1.7	17
168	Recent progress on natural fiber hybrid composites for advanced applications: A review. EXPRESS Polymer Letters, 2019, 13, 159-198.	1.1	276
169	Thiol-modified magnetic polypyrrole nanocomposite: An effective adsorbent for the adsorption of silver ions from aqueous solution and subsequent water disinfection by silver-laden nanocomposite. Chemical Engineering Journal, 2019, 360, 423-434.	6.6	54
170	Tuning the Conductivity of Nanocomposites through Nanoparticle Migration and Interface Crossing in Immiscible Polymer Blends: A Review on Fundamental Understanding. Macromolecular Materials and Engineering, 2019, 304, 1800431.	1.7	62
171	Characterization of polypropylene/polystyrene boehmite alumina nanocomposites: Impact of filler surface modification on the mechanical, thermal, and rheological properties. Journal of Applied Polymer Science, 2018, 135, 46376.	1.3	16
172	Efficient and Cost-effective Photoelectrochemical Degradation of Dyes in Wastewater over an Exfoliated Graphite-MoO3 Nanocomposite Electrode. Electrocatalysis, 2018, 9, 623-631.	1.5	27
173	Synthesis and mesophase characterization of methacrylate based three phenyl ring core side chain liquid crystalline copolymers. Journal of Molecular Liquids, 2018, 259, 416-423.	2.3	2
174	Characterization and in vitro release kinetics of antimalarials from whey protein-based hydrogel biocomposites. International Journal of Industrial Chemistry, 2018, 9, 39-52.	3.1	32
175	Layered Double Hydroxideâ€Based Functional Nanohybrids as Controlled Release Carriers of Pharmaceutically Active Ingredients. Chemical Record, 2018, 18, 913-927.	2.9	11
176	Morphological development and enhancement of thermal, mechanical, and electronic properties of thermally exfoliated graphene oxide-filled biodegradable polylactide/poly($\hat{l}\mu$ -caprolactone) blend composites. Polymer, 2018, 139, 188-200.	1.8	33
177	Blue- and red-shifts of V ₂ O ₅ phonons in NH ₃ environment by <i>in situ</i> Raman spectroscopy. Journal Physics D: Applied Physics, 2018, 51, 015106.	1.3	14
178	Depth filtration of airborne agglomerates using electrospun bio-based polylactide membranes. Journal of Environmental Chemical Engineering, 2018, 6, 762-772.	3.3	16
179	Structure–property relationship in PP/LDPE blend composites: The role of nanoclay localization. Journal of Applied Polymer Science, 2018, 135, 46193.	1.3	11
180	Modification of gum ghatti via grafting with acrylamide and analysis of its flocculation, adsorption, and biodegradation properties. International Journal of Biological Macromolecules, 2018, 114, 283-294.	3.6	74

#	Article	IF	Citations
181	Influence of functionalized exfoliated reduced graphene oxide nanoparticle localization on mechanical, thermal and electronic properties of nanobiocomposites. European Polymer Journal, 2018, 102, 130-140.	2.6	23
182	m-Phenylenediamine-modified polypyrrole as an efficient adsorbent for removal of highly toxic hexavalent chromium in water. Materials Today Communications, 2018, 15, 153-164.	0.9	31
183	Ultra-high sensitive and selective H2 gas sensor manifested by interface of n–n heterostructure of CeO2-SnO2 nanoparticles. Sensors and Actuators B: Chemical, 2018, 254, 984-995.	4.0	175
184	The Effect of Thyme Oil Low-Density Polyethylene Impregnated Pellets in Polylactic Acid Sachets on Storage Quality of Ready-to-Eat Avocado. Food and Bioprocess Technology, 2018, 11, 141-151.	2.6	7
185	Synthesis and characterization of alginate beads encapsulated zinc oxide nanoparticles for bacteria disinfection in water. Journal of Colloid and Interface Science, 2018, 512, 686-692.	5.0	52
186	Influence of Silica Size on Properties of Poly[(Butylene Succinate)â€Coâ€Adipate]/Butylâ€Etherified Highâ€Amylose Starch Blend Composites. Starch/Staerke, 2018, 70, 1700181.	1.1	0
187	Synthesis, characterization and in vitro cytotoxicity evaluation of polyamidoamine conjugate containing pamidronate and platinum drug. Journal of Drug Delivery Science and Technology, 2018, 43, 267-273.	1.4	14
188	Tuning the nano/microâ€structure and properties of meltâ€processed ternary composites of polypropylene/ethylene vinyl acetate blend and nanoclay: The influence of kinetic and thermodynamic parameters. Journal of Applied Polymer Science, 2018, 135, 45585.	1.3	6
189	Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination. RSC Advances, 2018, 8, 37915-37938.	1.7	61
190	Advances in Nanostructured Metal-Encapsulated Porous Organic-Polymer Composites for Catalyzed Organic Chemical Synthesis. Catalysts, 2018, 8, 492.	1.6	17
191	Efficient organic dye removal from wastewater by magnetic carbonaceous adsorbent prepared from corn starch. Journal of Environmental Chemical Engineering, 2018, 6, 7119-7131.	3.3	97
192	Rheology–Microstructure Relationships in Melt-Processed Polylactide/Poly(vinylidene Fluoride) Blends. Materials, 2018, 11, 2450.	1.3	15
193	Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cells. Scientific Reports, 2018, 8, 14368.	1.6	86
194	Processing Nanocomposites Based on Commodity Polymers. Springer Series in Materials Science, 2018, , 1-25.	0.4	0
195	Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. European Polymer Journal, 2018, 109, 402-434.	2.6	147
196	Bionanocomposite Hydrogel for the Adsorption of Dye and Reusability of Generated Waste for the Photodegradation of Ciprofloxacin: A Demonstration of the Circularity Concept for Water Purification. ACS Sustainable Chemistry and Engineering, 2018, 6, 17011-17025.	3.2	108
197	Thermal Degradation Characteristic and Flame Retardancy of Polylactide-Based Nanobiocomposites. Molecules, 2018, 23, 2648.	1.7	25
198	A Brief Overview of Layered Silicates and Polymer/Layered Silicate Nanocomposite Formation. Springer Series in Materials Science, 2018, , 57-86.	0.4	0

#	Article	IF	Citations
199	Impact of Melt-Processing Strategy on Structural and Mechanical Properties: Clay-Containing Polypropylene Nanocomposites. Springer Series in Materials Science, 2018, , 127-154.	0.4	3
200	Processing of Polymer Blends, Emphasizing: Melt Compounding; Influence of Nanoparticles on Blend Morphology and Rheology; Reactive Processing in Ternary Systems; Morphology–Property Relationships; Performance and Application Challenges; and Opportunities and Future Trends. Springer Series in Materials Science, 2018, , 167-197.	0.4	8
201	Electrospun Polymer Nanocomposites. Springer Series in Materials Science, 2018, , 199-229.	0.4	3
202	Processing Nanocomposites Based on Engineering Polymers: Polyamides and Polyimides. Springer Series in Materials Science, 2018, , 27-73.	0.4	0
203	Rubber Nanocomposites: Processing, Structure–Property Relationships, Applications, Challenges, and Future Trends. Springer Series in Materials Science, 2018, , 75-106.	0.4	1
204	Processing of Sustainable Polymer Nanocomposites. Springer Series in Materials Science, 2018, , 139-165.	0.4	0
205	Processing Thermoset-Based Nanocomposites. Springer Series in Materials Science, 2018, , 107-137.	0.4	4
206	Introduction to Nanomaterials and Polymer Nanocomposite Processing. Springer Series in Materials Science, 2018, , 1-14.	0.4	2
207	Structural Characterization of Polymer Nanocomposites. Springer Series in Materials Science, 2018, , 87-126.	0.4	2
208	Synthesis and Functionalization of Nanomaterials. Springer Series in Materials Science, 2018, , 15-55.	0.4	12
209	Polyaniline-clay composite-containing epoxy coating with enhanced corrosion protection and mechanical properties. Synthetic Metals, 2018, 245, 102-110.	2.1	29
210	A new insight into morphological, thermal, and mechanical properties of melt-processed polylactide/poly(<mml:math)="" 0="" altimg="si1.gif" c<="" etqq0="" td="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>) rgBT /Ove</td><td>erlock 10 Tf 5</td></mml:math>) rgBT /Ove	erlock 10 Tf 5
211	Polymer Degradation and Stability, 2018, 154, 84-95. Influence of Nanoclay Localization on Structure–Property Relationships of Polylactideâ€Based Biodegradable Blend Nanocomposites. Macromolecular Materials and Engineering, 2018, 303, 1800134.	1.7	33
212	Influence of Selectively Localised Nanoclay Particles on Non-Isothermal Crystallisation and Degradation Behaviour of PP/LDPE Blend Composites. Polymers, 2018, 10, 245.	2.0	21
213	Microstructure Development and Its Influence on the Properties of Styrene-Ethylene-Butylene-Styrene/Polystyrene Blends. Polymers, 2018, 10, 400.	2.0	21
214	Processingâ€Driven Morphology Development and Crystallization Behavior of Immiscible Polylactide/Poly(Vinylidene Fluoride) Blends. Macromolecular Materials and Engineering, 2018, 303, 1800349.	1.7	17
215	Dynamic rheology and foaming behaviour of styrene–ethylene–butylene–styrene/ polystyrene blends. Journal of Cellular Plastics, 2017, 53, 389-406.	1.2	20
216	Thermodynamic properties and adsorption behaviour of hydrogel nanocomposites for cadmium removal from mine effluents. Journal of Industrial and Engineering Chemistry, 2017, 48, 151-161.	2.9	99

#	Article	IF	CITATIONS
217	Improving methane gas sensing properties of multi-walled carbon nanotubes by vanadium oxide filling. Sensors and Actuators B: Chemical, 2017, 247, 11-18.	4.0	49
218	Life cycle assessment of facile microwave-assisted zinc oxide (ZnO) nanostructures. Science of the Total Environment, 2017, 586, 566-575.	3.9	28
219	Development of a highly nucleated and dimensionally stable isotactic polypropylene/nanoclay composite using reactive blending. Polymer, 2017, 117, 37-47.	1.8	18
220	Thermo-oxidative degradation study of melt-processed polyethylene and its blend with polyamide using time-resolved rheometry. Polymer Degradation and Stability, 2017, 139, 130-137.	2.7	23
221	Electronic to protonic conduction switching in Cu ₂ 0 nanostructured porous films: the effect of humidity exposure. RSC Advances, 2017, 7, 21703-21712.	1.7	26
222	Selective removal of toxic Cr(VI) from aqueous solution by adsorption combined with reduction at a magnetic nanocomposite surface. Journal of Colloid and Interface Science, 2017, 503, 214-228.	5.0	152
223	Applications of Nanoclay-Containing Polymer Nanocomposites. Nanostructure Science and Technology, 2017, , 501-521.	0.1	2
224	Thermal, mechanical, and rheological properties of graphite―and graphene oxideâ€filled biodegradable polylactide/poly(É>â€caprolactone) blend composites. Journal of Applied Polymer Science, 2017, 134, 45373.	1.3	28
225	The influence of filler surface modification on mechanical and material properties of layered double hydroxideâ€containing polypropylene composites. Journal of Applied Polymer Science, 2017, 134, 45024.	1.3	16
226	Isolation and characterisation of nanoparticles from tef and maize starch modified with stearic acid. Carbohydrate Polymers, 2017, 168, 86-93.	5.1	19
227	Highly efficient inactivation of bacteria found in drinking water using chitosan-bentonite composites: Modelling and breakthrough curve analysis. Water Research, 2017, 111, 213-223.	5.3	30
228	Ionic liquid-assisted synthesis of Ag/Ag ₂ Te nanocrystals <i>via</i> a hydrothermal route for enhanced photocatalytic performance. New Journal of Chemistry, 2017, 41, 14618-14626.	1.4	39
229	A novel approach to low-temperature synthesis of cubic HfO2 nanostructures and their cytotoxicity. Scientific Reports, 2017, 7, 9351.	1.6	55
230	Thermally shocked graphene oxide-containing biocomposite for thermal management applications. RSC Advances, 2017, 7, 33751-33756.	1.7	17
231	Effect of the mode of nanoclay inclusion on morphology development and rheological properties of nylon6/ethyl–vinyl-alcohol blend composites. Polymer, 2017, 126, 96-108.	1.8	12
232	Preferential adsorption of NH ₃ gas molecules on MWCNT defect sites probed using <i>in situ</i> i> Raman spectroscopy. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600930.	0.8	7
233	Hydrogel-Based Bioflocculants for the Removal of Organic Pollutants from Biodiesel Wastewater. Journal of Polymers and the Environment, 2017, 25, 844-853.	2.4	15
234	The effect of starch amylose content on the morphology and properties of melt-processed butyl-etherified starch/poly[(butylene succinate)-co-adipate] blends. Carbohydrate Polymers, 2017, 155, 89-100.	5.1	25

#	Article	IF	CITATIONS
235	Gum acacia polysaccharide-based pH sensitive gels for targeted delivery of neridronate. Polymer Bulletin, 2017, 74, 2641-2655.	1.7	2
236	Self-Healing Polymeric Composite Material Design, Failure Analysis and Future Outlook: A Review. Polymers, 2017, 9, 535.	2.0	58
237	The Distribution of Nanoclay Particles at the Interface and Their Influence on the Microstructure Development and Rheological Properties of Reactively Processed Biodegradable Polylactide/Poly(butylene succinate) Blend Nanocomposites. Polymers, 2017, 9, 350.	2.0	39
238	Investigations on Blending and Foaming Behavior of Styrene-Ethylene-Butylene-Styrene/Polystyrene Blends. International Polymer Processing, 2017, 32, 434-445.	0.3	11
239	Morphology and thermal properties of recycled polyacrylonitrile fiber blends with poly(ethylene) Tj ETQq $1\ 1\ 0.78^2$	1314 rgBT 1.3	/gverlock 1
240	Recent Progress on the Design and Applications of Polysaccharideâ€Based Graft Copolymer Hydrogels as Adsorbents for Wastewater Purification. Macromolecular Materials and Engineering, 2016, 301, 496-522.	1.7	114
241	Acetyl salicylic acid–ZnAl layered double hydroxide functional nanohybrid for skin care application. RSC Advances, 2016, 6, 105862-105870.	1.7	17
242	Preparation and evaluation of quaternary imidazolium-modified montmorillonite for disinfection of drinking water. Applied Clay Science, 2016, 127-128, 95-104.	2.6	18
243	Correlating the magnetism and gas sensing properties of Mn-doped ZnO films enhanced by UV irradiation. RSC Advances, 2016, 6, 26227-26238.	1.7	45
244	Interface structural effect of ruthenium-cerium oxide nanocomposite on its catalytic activity for selective oxidation of bioterpenes-derived p-cymene. Journal of Molecular Catalysis A, 2016, 418-419, 19-29.	4.8	3
245	Adsorption of methyl violet from aqueous solution using gum xanthan/Fe3O4 based nanocomposite hydrogel. International Journal of Biological Macromolecules, 2016, 89, 1-11.	3.6	141
246	Selective removal of Cr(VI) from aqueous solution by polypyrrole/2,5-diaminobenzene sulfonic acid composite. Journal of Colloid and Interface Science, 2016, 476, 144-157.	5.0	65
247	Inorganic layered double hydroxides as a 4-hexyl resorcinol delivery system for topical applications. RSC Advances, 2016, 6, 77709-77716.	1.7	10
248	Preparation, characterization and inÂvitro release kinetics of polyaspartamide-based conjugates containing antimalarial and anticancer agents for combination therapy. Journal of Drug Delivery Science and Technology, 2016, 36, 34-45.	1.4	21
249	Macromol. Mater. Eng. 10/2016. Macromolecular Materials and Engineering, 2016, 301, 1280-1280.	1.7	O
250	The Influence of Blend Ratio on the Morphology, Mechanical, Thermal, and Rheological Properties of PP/LDPE Blends. Macromolecular Materials and Engineering, 2016, 301, 1191-1201.	1.7	28
251	Chemical synthesis, characterization and evaluation of antimicrobial properties of Cu and its oxide nanoparticles. Journal of Nanoparticle Research, 2016 , 18 , 1 .	0.8	5
252	Improved sensitivity and selectivity of pristine zinc oxide nanostructures to H2S gas: Detailed study on the synthesis reaction time. Applied Surface Science, 2016, 386, 210-223.	3.1	24

#	Article	IF	Citations
253	A noble additive cum compatibilizer for dispersion of nanoclay into ethylene octene elastomer. Applied Clay Science, 2016, 126, 41-49.	2.6	8
254	Development of antifungal films based on lowâ€density polyethylene and thyme oil for avocado packaging. Journal of Applied Polymer Science, 2016, 133, .	1.3	5
255	Synthesis and magnetic properties of highly dispersed tantalum carbide nanoparticles decorated on carbon spheres. CrystEngComm, 2016, 18, 1427-1438.	1.3	4
256	Gum karaya based hydrogel nanocomposites for the effective removal of cationic dyes from aqueous solutions. Applied Surface Science, 2016, 364, 917-930.	3.1	106
257	Preparation and characterization of gum karaya hydrogel nanocomposite flocculant for metal ions removal from mine effluents. International Journal of Environmental Science and Technology, 2016, 13, 711-724.	1.8	48
258	Impact of non-ionic surfactant chemical structure on morphology and stability of polystyrene nanocomposite latex. Colloid and Polymer Science, 2016, 294, 157-170.	1.0	7
259	Crystallization and Morphological Changes in Nanostructured Polymer Blends. , 2016, , 287-312.		2
260	A study on the adsorption of methylene blue onto gum ghatti/TiO2 nanoparticles-based hydrogel nanocomposite. International Journal of Biological Macromolecules, 2016, 88, 66-80.	3.6	118
261	Efficient removal of rhodamine 6G dye from aqueous solution using nickel sulphide incorporated polyacrylamide grafted gum karaya bionanocomposite hydrogel. RSC Advances, 2016, 6, 21929-21939.	1.7	100
262	Nanoclay minerals and plastics: tiny particles deliver big impact. Journal of Nanomedicine & Nanotechnology, 2016, 07, .	1.1	0
263	Synthesis and characterization of polylactide/doxorubicin/magnetic nanoparticles composites for drug delivery. AIP Conference Proceedings, 2015, , .	0.3	0
264	Development of silver and zinc oxide decorated nanoclay containing polymeric composites for water disinfection applications. AIP Conference Proceedings, 2015, , .	0.3	3
265	Fabrication of polylactide nanocomposite scaffolds for bone tissue engineering applications. AIP Conference Proceedings, 2015, , .	0.3	1
266	Polyethylene Terephthalate-Based Blends: Natural Rubber and Synthetic Rubber., 2015,, 75-98.		2
267	Kinetic models for the release of the anticancer drug doxorubicin from biodegradable polylactide/metal oxide-based hybrids. International Journal of Biological Macromolecules, 2015, 72, 1301-1307.	3.6	57
268	Biodegradation and bioresorption of poly(É>-caprolactone) nanocomposite scaffolds. International Journal of Biological Macromolecules, 2015, 79, 186-192.	3.6	24
269	Development of a reduced-graphene-oxide based superparamagnetic nanocomposite for the removal of nickel (II) from an aqueous medium via a fluorescence sensor platform. Journal of Colloid and Interface Science, 2015, 454, 69-79.	5.0	11
270	Multifunctional Nanobiocomposite of Poly[(butylenes succinate)-co-adipate] and Clay. Journal of Nanoscience and Nanotechnology, 2015, 15, 2446-2450.	0.9	2

#	Article	IF	CITATIONS
271	Viscoelastic Properties of Poly[(butylenes succinate)-co-adipate] Nanocomposites. Journal of Nanoscience and Nanotechnology, 2015, 15, 2312-2316.	0.9	O
272	Development of a high-performance nanostructured V2O5/SnO2 catalyst for efficient benzene hydroxylation. Applied Catalysis A: General, 2015, 492, 10-22.	2.2	20
273	Extraction and Characterization of Natural Cellulose Fibers from Maize Tassel. International Journal of Polymer Analysis and Characterization, 2015, 20, 99-109.	0.9	68
274	Targeted drug delivery potential of hydrogel biocomposites containing partially and thermally reduced graphene oxide and natural polymers prepared via green process. Colloid and Polymer Science, 2015, 293, 409-420.	1.0	12
275	The Adsorption of Pb ²⁺ and Cu ²⁺ onto Gum Ghatti-Grafted Poly(acrylamide- <i>co</i> -acrylonitrile) Biodegradable Hydrogel: Isotherms and Kinetic Models. Journal of Physical Chemistry B, 2015, 119, 2026-2039.	1.2	111
276	Controlled dual release study of curcumin and a 4â€aminoquinoline analog from gum acacia containing hydrogels. Journal of Applied Polymer Science, 2015, 132, .	1.3	28
277	Synthesis and characterization of polyamidoamine conjugates of neridronic acid. Polymer Bulletin, 2015, 72, 417-439.	1.7	10
278	Effect of multiwalled carbon nanotube loading on the properties of Nafion $\hat{A}^{\text{@}}$ membranes. Journal of Materials Research, 2015, 30, 66-78.	1.2	10
279	Gum ghatti and poly(acrylamide-co-acrylic acid) based biodegradable hydrogel-evaluation of the flocculation and adsorption properties. Polymer Degradation and Stability, 2015, 120, 42-52.	2.7	55
280	Morphology, thermal properties and crystallization kinetics of ternary blends of the polylactide and starch biopolymers and nanoclay: The role of nanoclay hydrophobicity. Polymer, 2015, 71, 82-92.	1.8	40
281	Multifunctional nanobiocomposites of biodegradable polylactide and nanoclay., 2015,, 144-212.		2
282	Preparation and antibacterial activity of chitosan-based nanocomposites containing bentonite-supported silver and zinc oxide nanoparticles for water disinfection. Applied Clay Science, 2015, 114, 330-339.	2.6	120
283	Studies On The Chemical Resistance And Mechanical Properties Of Natural Polyalthia Cerasoides Woven Fabric/glass Hybridized Epoxy Composites Â. Advanced Materials Letters, 2015, 6, 114-119.	0.3	8
284	Enzymatic degradation behavior of nanoclay reinforced biodegradable PLA/PBSA blend composites. International Journal of Biological Macromolecules, 2015, 77, 131-142.	3.6	46
285	Synthesis of co-polymer-grafted gum karaya and silica hybrid organic–inorganic hydrogel nanocomposite for the highly effective removal of methylene blue. Chemical Engineering Journal, 2015, 279, 166-179.	6.6	165
286	Effective removal of cationic dyes from aqueous solution using gum ghatti-based biodegradable hydrogel. International Journal of Biological Macromolecules, 2015, 79, 8-20.	3.6	97
287	Polylactide-based Magnetic Spheres as Efficient Carriers for Anticancer Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2015, 7, 22692-22701.	4.0	32
288	Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in-situ reactive compatibilization. Polymer, 2015, 80, 1-17.	1.8	149

#	Article	IF	Citations
289	Side Chain Liquid Crystalline Polymers: Advances and Applications. , 2015, , 389-415.		4
290	A study on the sensing of NO2 and O2 utilizing ZnO films grown by aerosol spray pyrolysis. Materials Chemistry and Physics, 2015, 162, 628-639.	2.0	20
291	Metal oxide nanostructures-containing organic polymer hybrid solar cells: Optimization of processing parameters on cell performance. Applied Surface Science, 2015, 355, 484-494.	3.1	7
292	Hydroxylation of benzene to phenol over magnetic recyclable nanostructured CuFe mixed-oxide catalyst. Journal of Molecular Catalysis A, 2015, 398, 149-157.	4.8	31
293	Kinetic release studies of nitrogen-containing bisphosphonate from gum acacia crosslinked hydrogels. International Journal of Biological Macromolecules, 2015, 73, 115-123.	3.6	46
294	Induced ferromagnetic and gas sensing properties in ZnO-nanostructures by altering defect concentration of oxygen and zinc vacancies. Materials Letters, 2015, 139, 475-479.	1.3	48
295	Influence of Boehmite Nanoparticle Loading on the Mechanical, Thermal, and Rheological Properties of Biodegradable Polylactide/Poly(Ϊμâ€εaprolactone) Blends. Macromolecular Materials and Engineering, 2015, 300, 31-47.	1.7	34
296	Flocculation and adsorption properties of biodegradable gum-ghatti-grafted poly(acrylamide-co-methacrylic acid) hydrogels. Carbohydrate Polymers, 2015, 115, 617-628.	5.1	88
297	Mechanical, Barrier and Antimicrobial Properties of Biodegradable Poly(<1>ε 1 -caprolactone) Nanocomposites. Advanced Science, Engineering and Medicine, 2015, 7, 351-360.	0.3	1
298	Synthesis, characterization and the release kinetics of antiproliferative agents from polyamidoamine conjugates. Journal of Microencapsulation, 2015, 32, 432-42.	1.2	3
299	Poly(<l>ε</l> -caprolactone) Nanocomposite Scaffolds for Tissue Engineering: A Brief Overview. Journal of Nanoscience and Nanotechnology, 2014, 14, 535-545.	0.9	51
300	Optical Properties of Nanoparticles and Nanocomposites. Journal of Nanomaterials, 2014, 2014, 1-2.	1.5	31
301	Polymer Nanocomposite Processing, Characterization, and Applications 2013. Journal of Nanomaterials, 2014, 2014, 1-2.	1.5	10
302	Characterisation and Thermal Properties of Titanium Dioxide Nanoparticles-Containing Biodegradable Polylactide Composites Synthesized by Sol–Gel Method. Journal of Nanoscience and Nanotechnology, 2014, 14, 4269-4277.	0.9	9
303	Tailoring the mechanical properties of SU-8/clay nanocomposites: polymer microcantilever fabrication perspective. , $2014, , .$		1
304	Synthesis of Nanomaterials by Continuous-Flow Microfluidics: A Review. Journal of Nanoscience and Nanotechnology, 2014, 14, 1338-1363.	0.9	67
305	Viscoelastic and Electrical Properties of Carbon Nanotubes Filled Poly(butylene succinate). International Polymer Processing, 2014, 29, 88-94.	0.3	4
306	Anomalous impact strength for layered double hydroxideâ€palmitate/poly(εâ€caprolactone) nanocomposites. Journal of Applied Polymer Science, 2014, 131, .	1.3	8

#	Article	IF	CITATIONS
307	Role of Organoclay in Controlling the Morphology and Crystalâ€Growth Behavior of Biodegradable Polymerâ€Blend Thin Films Studied Using Atomic Force Microscopy. Macromolecular Materials and Engineering, 2014, 299, 1106-1115.	1.7	2
308	Effect of nanoclay on optical properties of PLA/clay composite films. Polymer Testing, 2014, 36, 24-31.	2.3	44
309	Nano-biocomposites based on synthetic aliphatic polyesters and nanoclay. Progress in Materials Science, 2014, 62, 1-57.	16.0	56
310	Unique Coldâ€Crystallization Behavior and Kinetics of Biodegradable Poly[(butylene succinate)â€co adipate] Nanocomposites: A High Speed Differential Scanning Calorimetry Study. Macromolecular Materials and Engineering, 2014, 299, 939-952.	1.7	14
311	Investigating the Crystal Growth Behavior of Biodegradable Polymer Blend Thin Films Using In Situ Atomic Force Microscopy. Macromolecular Materials and Engineering, 2014, 299, 689-697.	1.7	12
312	A combined experimental and theoretical approach to establish the relationship between shear force and clay platelet delamination in melt-processed polypropylene nanocomposites. Polymer, 2014, 55, 2233-2245.	1.8	25
313	Shape-Selective Dependence of Room Temperature Ferromagnetism Induced by Hierarchical ZnO Nanostructures. ACS Applied Materials & Interfaces, 2014, 6, 8981-8995.	4.0	117
314	Defect-induced magnetism in undoped and Mn-doped wide band gap zinc oxide grown by aerosol spray pyrolysis. Applied Surface Science, 2014, 311, 14-26.	3.1	43
315	The effect of different clays on the structure, morphology and degradation behavior of poly(lactic) Tj ETQq $1\ 1\ 0$.784314 r	gBT ₃ /Overloc
316	Polystyrene/TiO2 composite electrospun fibers as fillers for poly(butylene succinate-co-adipate): Structure, morphology and properties. European Polymer Journal, 2014, 50, 78-86.	2.6	28
317	Concurrent Enhancement of Multiple Properties in Reactively Processed Nanocomposites of Polylactide/ <scp>P</scp> oly[(butylene succinate)â€ <i>co</i> â€adipate] Blend and Organoclay. Macromolecular Materials and Engineering, 2014, 299, 596-608.	1.7	31
318	Development of microbial resistant Carbopol nanocomposite hydrogels via a green process. Biomaterials Science, 2014, 2, 257-263.	2.6	22
319	An instant photo-excited electrons relaxation on the photo-degradation properties of TiO2â^'x films. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 293, 72-80.	2.0	11
320	Mechanical properties of uniaxial natural fabric Grewia tilifolia reinforced epoxy based composites: Effects of chemical treatment. Fibers and Polymers, 2014, 15, 1462-1468.	1.1	21
321	Synthesis and flocculation properties of gum ghatti and poly(acrylamide-co-acrylonitrile) based biodegradable hydrogels. Carbohydrate Polymers, 2014, 114, 321-329.	5.1	58
322	Recent Trends and Future Outlooks in the Field of Clayâ€Containing Polymer Nanocomposites. Macromolecular Chemistry and Physics, 2014, 215, 1162-1179.	1.1	59
323	Structure and properties of highly toughened biodegradable polylactide/ZnO biocomposite films. International Journal of Biological Macromolecules, 2014, 64, 428-434.	3.6	71
324	Efficient room temperature oxidation of cyclohexane over highly active hetero-mixed WO3/V2O5 oxide catalyst. Catalysis Communications, 2014, 54, 118-123.	1.6	30

#	Article	IF	Citations
325	Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch. Carbohydrate Polymers, 2014, 112, 216-224.	5.1	54
326	Crystallization and thermal properties of polylactide/palygorskite composites. Journal of Applied Polymer Science, 2014, 131, .	1.3	15
327	Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites. Carbohydrate Polymers, 2013, 93, 622-627.	5.1	73
328	Effect of Alkali Treatment on the Morphology and Tensile Properties of <i>Cordia Dichotoma</i> Fabric/Polycarbonate Composites. Advances in Polymer Technology, 2013, 32, .	0.8	11
329	Orientation-dependent low field magnetic anomalies and room-temperature spintronic material – Mn doped ZnO films by aerosol spray pyrolysis. Journal of Alloys and Compounds, 2013, 579, 485-494.	2.8	19
330	Cellulose–polymer–Ag nanocomposite fibers for antibacterial fabrics/skin scaffolds. Carbohydrate Polymers, 2013, 93, 553-560.	5.1	133
331	Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. Journal of Hazardous Materials, 2013, 262, 439-446.	6.5	152
332	Microwave assisted green synthesis and characterization of silver/montmorillonite heterostructures with improved antimicrobial properties. Applied Clay Science, 2013, 83-84, 315-321.	2.6	14
333	Environmentally friendly polymer nanocomposites using polymer matrices from renewable sources. , 2013, , 89-156.		6
334	Tensile properties of environmentally friendly polymer nanocomposites using biodegradable polymer matrices and clay/carbon nanotube (CNT) reinforcements., 2013,, 225-268.		2
335	Novel inorganic hydrogels for biomedical applications. , 2013, , .		1
336	Tin dioxide nano-wire device for sensing kinetics of acetone and ethanol towards diabetes monitoring. , 2013 , , .		3
337	Environmentally friendly nanofillers as reinforcements for composites. , 2013, , 41-73.		0
338	Structure and properties of poly (lactic acid)/Sterculia urens uniaxial fabric biocomposites. Carbohydrate Polymers, 2013, 94, 822-828.	5.1	31
339	A classification and ranking system on the H2 gas sensing capabilities of nanomaterials based on proposed coefficients of sensor performance and sensor efficiency equations. Sensors and Actuators B: Chemical, 2013, 184, 170-178.	4.0	27
340	Annealing effect of hybrid solar cells based on poly (3-hexylthiophene) and zinc-oxide nanostructures. Thin Solid Films, 2013, 537, 90-96.	0.8	4
341	Mechanical, thermal, and fire properties of polylactide/starch blend/clay composites. Journal of Thermal Analysis and Calorimetry, 2013, 113, 703-712.	2.0	43
342	Nanosized ruthenium particles decorated carbon nanofibers as active catalysts for the oxidation of p-cymene by molecular oxygen. Journal of Molecular Catalysis A, 2013, 373, 1-11.	4.8	15

#	Article	IF	CITATIONS
343	Morphological and thermal properties of photodegradable biocomposite films. Journal of Applied Polymer Science, 2013, 129, 362-370.	1.3	16
344	Mechanical, Thermal, and Fire Properties of Biodegradable Polylactide/Boehmite Alumina Composites. Industrial & Engineering Chemistry Research, 2013, 52, 6083-6091.	1.8	40
345	An Overview of Pure and Organically Modified Clays. , 2013, , 1-24.		2
346	Thermodynamics, Molecular Modeling, and Kinetics of Nanocomposite Formation., 2013, , 25-37.		1
347	Concluding Remarks and Future Outlook. , 2013, , 375-379.		0
348	Real and Potential Applications. , 2013, , 369-373.		0
349	Foam Processing. , 2013, , 351-367.		0
350	Melt-State Rheology. , 2013, , 305-350.		1
351	Crystallization Behavior, Morphology, and Kinetics. , 2013, , 273-303.		0
352	Fire-Retardant Properties. , 2013, , 263-271.		0
353	Thermal Stability., 2013,, 243-261.		2
354	Barrier Properties. , 2013, , 227-241.		3
355	Processing and Characterization. , 2013, , 67-170.		0
356	Structure and Morphology Characterization Techniques. , 2013, , 39-66.		10
357	A New Series of Two-Ring-Based Side Chain Liquid Crystalline Polymers: Synthesis and Mesophase Characterization. Australian Journal of Chemistry, 2013, 66, 667.	0.5	7
358	Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydrate Polymers, 2013, 98, 562-567.	5.1	215
359	Toughening of Biodegradable Polylactide/Poly(butylene succinate- <i>co</i> -adipate) Blends via in Situ Reactive Compatibilization. ACS Applied Materials & Interfaces, 2013, 5, 4266-4276.	4.0	222
360	Optical constants correlated electrons-spin of micro doughnuts of Mn-doped ZnO films. Applied Surface Science, 2013, 280, 79-88.	3.1	6

#	Article	IF	Citations
361	Processing strategies in bionanocomposites. Progress in Polymer Science, 2013, 38, 1543-1589.	11.8	186
362	Structural and optical properties of ZnO nanostructures grown by aerosol spray pyrolysis: Candidates for room temperature methane and hydrogen gas sensing. Applied Surface Science, 2013, 279, 142-149.	3.1	35
363	Role of Nanoclay Shape and Surface Characteristics on the Morphology and Thermal Properties of Polystyrene Nanocomposites Synthesized <i>via</i> Emulsion Polymerization. Industrial & Description of Engineering Chemistry Research, 2013, 52, 16220-16231.	1.8	14
364	Barrier properties of environmentally friendly polymer nanocomposites using biodegradable polymer matrices and clay/carbon nanotube (CNT) reinforcements. , 2013, , 328-345.		1
365	Crystallization behavior, kinetics and morphology of environmentally friendly polymer nanocomposites using biodegradable polymer matrices and clay/carbon nanotube (CNT) reinforcements., 2013,, 346-384.		O
366	Environmentally friendly polymer matrices for composites. , 2013, , 25-40.		2
367	Thermal stability and flammability of environmentally friendly polymer nanocomposites using biodegradable polymer matrices and clay/carbon nanotube (CNT) reinforcements., 2013,, 295-327.		2
368	Biodegradation behavior of environmentally friendly polymer nanocomposites using biodegradable polymer matrices and clay/carbon (CNT) reinforcements. , 2013, , 385-414.		0
369	Rheological properties of environmentally friendly polymer nanocomposites (EFPNCs) using biodegradable polymer matrices and clay/carbon nanotube (CNT) reinforcements., 2013,, 415-449.		0
370	Dynamic mechanical properties of environmentally friendly polymer nanocomposites using biodegradable polymer matrices and clay/carbon nanotube (CNT) reinforcements. , 2013, , 269-294.		5
371	Environmentally friendly polymer nanocomposites using polymer matrices from fossil fuel sources. , 2013, , 157-207.		0
372	Techniques for characterizing the structure and properties of polymer nanocomposites., 2013,, 74-88.		6
373	Introduction to environmentally friendly polymer nanocomposites. , 2013, , 3-24.		4
374	Processing of environmentally friendly polymer nanocomposite foams for packaging and other applications. , 2013, , 208-221.		0
375	Electrical and thermal conductivity of environmentally friendly polymer nanocomposites (EFPNCs) using biodegradable polymer matrices and clay/carbon nanotube (CNT) reinforcements., 2013,, 450-464.		1
376	Applications, environmental impact and future development of environmentally friendly polymer nanocomposites (EFPNCs)., 2013,, 467-477.		1
377	Dielectric Properties of Polyaniline-Montmorillonite Clay Hybrids. Journal of Nanoscience and Nanotechnology, 2013, 13, 1824-1829.	0.9	7
378	<i>A Special Section on </i> Nano-Catalysis. Journal of Nanoscience and Nanotechnology, 2013, 13, 4759-4760.	0.9	0

#	Article	IF	Citations
379	Catalytic Activity and Structure Properties of Doped VOHPO ₄ ·0.5H ₂ O with Nanosized Ru, Au, Fe and Mn in Benzene Hydroxylation. Journal of Nanoscience and Nanotechnology, 2013, 13, 5053-5060.	0.9	2
380	Environmentally friendly polymer nanocomposites. , 2013, , .		39
381	Polymer Nanocomposite Processing, Characterization, and Applications 2012. Journal of Nanomaterials, 2012, 2012, 1-1.	1.5	2
382	Nafion Titania Nanotubes Nanocomposite Electrolytes for High-Temperature Direct Methanol Fuel Cells. Journal of Nanomaterials, 2012, 2012, 1-7.	1.5	12
383	Optical and Morphological Properties of ZnO- and TiO ₂ -Derived Nanostructures Synthesized via a Microwave-Assisted Hydrothermal Method. International Journal of Photoenergy, 2012, 2012, 1-6.	1.4	23
384	Electrospun nylon fibers for the improvement of mechanical properties and for the control of degradation behavior of poly(lactide)-based composites. Journal of Materials Research, 2012, 27, 1399-1409.	1.2	18
385	Ab <i>Initio < li>Initio < li></i>	0.9	7
386	Recent Trends in the Microwave-Assisted Synthesis of Metal Oxide Nanoparticles Supported on Carbon Nanotubes and Their Applications. Journal of Nanomaterials, 2012, 2012, 1-15.	1.5	66
387	First Principles Studies of Extrinsic and Intrinsic Defects in Boron Nitride Nanotubes. Journal of Nanoscience and Nanotechnology, 2012, 12, 7807-7814.	0.9	2
388	Morphological, Dielectric and Electrical Conductivity Characteristics of Clay-Containing Nanohybrids of Poly(N-Vinyl Carbazole) and Polypyrrole. Journal of Nanoscience and Nanotechnology, 2012, 12, 7841-7848.	0.9	3
389	Vacancy Complexes in Carbon and Boron Nitride Nanotubes. Journal of Nanoscience and Nanotechnology, 2012, 12, 7796-7806.	0.9	1
390	Defect Complexes in Carbon and Boron Nitride Nanotubes. Journal of Nanoscience and Nanotechnology, 2012, 12, 7021-7029.	0.9	1
391	Synthesis and structural characterization of tungsten trioxide nanoplatelet-containing thin films prepared by Aqueous Chemical Growth. Thin Solid Films, 2012, 522, 164-170.	0.8	14
392	Composite Films of Arabinoxylan and Fibrous Sepiolite: Morphological, Mechanical, and Barrier Properties. ACS Applied Materials & Samp; Interfaces, 2012, 4, 3378-3386.	4.0	40
393	Clay-containing poly(ethylene terephthalate) (PET)-based polymer nanocomposites., 2012,, 277-320.		6
394	Effect of Nanoclay on the Nonisothermal Crystallization of Poly(propylene) and its Blend with Poly[(butylene succinate)-co-adipate]. Molecular Crystals and Liquid Crystals, 2012, 556, 176-190.	0.4	3
395	Photoluminescence and Hydrogen Gas-Sensing Properties of Titanium Dioxide Nanostructures Synthesized by Hydrothermal Treatments. ACS Applied Materials & Synthesized by Hydrothermal Treatments. ACS Applied Materials & Synthesized by Hydrothermal Treatments.	4.0	39
396	Study of morphology and crystal growth behaviour of nanoclay-containing biodegradable polymer blend thin films using atomic force microscopy. Polymer, 2012, 53, 2705-2716.	1.8	27

#	Article	IF	Citations
397	The impact of nanoclay on the crystal growth kinetics and morphology of biodegradable poly(ethylene succinate) composite. Polymer, 2012, 53, 3602-3612.	1.8	21
398	Field Emission Characteristics of SnO2/CNTs Composites Prepared by Microwave-Assisted Wet Impregnation. Journal of Nanomaterials, 2012, 2012, 1-4.	1.5	5
399	CHAPTER 2. Chitosan-based Nanocomposites. RSC Green Chemistry, 2012, , 33-68.	0.0	15
400	Poly(Butylene Succinate) and Poly[(Butylene Succinate)-co-Adipate] Nanocomposites. Green Energy and Technology, 2012, , 165-218.	0.4	5
401	Occurrence of amylose–lipid complexes in teff and maize starch biphasic pastes. Carbohydrate Polymers, 2012, 90, 616-622.	5.1	86
402	Polylactide-Based Bionanocomposites: A Promising Class of Hybrid Materials. Accounts of Chemical Research, 2012, 45, 1710-1720.	7.6	189
403	Effect of Nanoclay Loading on the Thermal and Mechanical Properties of Biodegradable Polylactide/Poly[(butylene succinate)-co-adipate] Blend Composites. ACS Applied Materials & Samp; Interfaces, 2012, 4, 2395-2405.	4.0	101
404	Role of Specific Interfacial Area in Controlling Properties of Immiscible Blends of Biodegradable Polylactide and Poly[(butylene succinate)-co-adipate]. ACS Applied Materials & Emp; Interfaces, 2012, 4, 6690-6701.	4.0	125
405	Effect of Boehmite Alumina Nanofiller Incorporation on the Morphology and Thermal Properties of Functionalized Poly(propylene)/Polyamide 12 Blends. Macromolecular Materials and Engineering, 2012, 297, 237-248.	1.7	15
406	Morphology and Thermal Properties of Compatibilized PA12/PP Blends with Boehmite Alumina Nanofiller Inclusions. Macromolecular Materials and Engineering, 2012, 297, 627-638.	1.7	30
407	Ruthenium Supported on Nitrogenâ€Doped Carbon Nanotubes for the Oxygen Reduction Reaction in Alkaline Media. Fuel Cells, 2012, 12, 862-868.	1.5	6
408	V-amylose Structural Characteristics, Methods of Preparation, Significance, and Potential Applications. Food Reviews International, 2012, 28, 412-438.	4.3	223
409	Unique isothermal crystallization phenomenon in the ternary blends of biopolymers polylactide and poly[(butylene succinate)-co-adipate] and nano-clay. Polymer, 2012, 53, 505-518.	1.8	62
410	Study of change in dispersion and orientation of clay platelets in a polymer nanocomposite during tensile test by variostage small-angle X-ray scattering. Polymer, 2012, 53, 1747-1759.	1.8	9
411	Dielectric properties of polycarbonate coated natural fabric Grewia tilifolia. , 2011, , .		1
412	A Review on Melt-State Viscoelastic Properties of Polymer Nanocomposites. Journal of Nanoscience and Nanotechnology, 2011, 11, 8421-8449.	0.9	22
413	Conventional wet impregnation versus microwave-assisted synthesis of SnO2/CNT composites. Journal of Nanoparticle Research, 2011, 13, 1093-1099.	0.8	13
414	Rheology of organoclay suspension. Colloid and Polymer Science, 2011, 289, 1119-1125.	1.0	33

#	Article	IF	CITATIONS
415	Synthesis and characterization of nickel selenide nanoparticles: size and shape determining parameters. Journal of Crystal Growth, 2011, 324, 41-52.	0.7	34
416	Nitrogen-doped carbon nanotubes as a metal catalyst support. Applied Nanoscience (Switzerland), 2011, 1, 67-77.	1.6	142
417	Morphology and Properties of Polymer Composites Based on Biodegradable Polylactide/Poly[(butylene) Tj ETQq1 865-877.	1 0.78431 1.7	4 rgBT /Ove 58
418	Magnetic carbonyl iron suspension with organoclay additive and its magnetorheological properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 377, 103-109.	2.3	74
419	Unique morphology of dispersed clay particles in a polymer nanocomposite. Polymer, 2011, 52, 1297-1301.	1.8	28
420	Determination of structural changes of dispersed clay platelets in a polymer blend during solid-state rheological property measurement by small-angle X-ray scattering. Polymer, 2011, 52, 2628-2642.	1.8	9
421	Melt-State Viscoelastic Properties of POSS-Containing Polyethylene Nanocomposites. Advanced Science Letters, 2011, 4, 3585-3589.	0.2	6
422	Effect of Oxygen Doping on Electrical Properties of Small Radius (2, 1) Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 4234-4239.	0.9	3
423	DFT Studies of Low Concentration Substitutional Doping of Transition-Metals on Single-Walled Carbon Nanotube Surface. Journal of Nanoscience and Nanotechnology, 2010, 10, 8180-8184.	0.9	3
424	Bionanohybrid Based on Bioplastic and Surface-Functionalized Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 7976-7980.	0.9	4
425	Carbon Nanotubes Based Nafion Composite Membranes for Fuel Cell Applications. Fuel Cells, 2010, 10, 64-71.	1.5	27
426	Structural Analysis of Liquid Crystal Polymer Based Nanocomposites by Xâ€Ray Scattering. Macromolecular Chemistry and Physics, 2010, 211, 1632-1639.	1.1	7
427	Synthesis of Co ₃ O ₄ /Poly(<i>N</i> ê€vinylcarbazole) Core/Shell Composite With Enhanced Optical Property. Macromolecular Materials and Engineering, 2010, 295, 153-158.	1.7	3
428	Effect of Nanoclay Incorporation on the Thermal Properties of Poly(ethylene terephthalate)/Liquid Crystal Polymer Blends. Macromolecular Materials and Engineering, 2010, 295, 822-837.	1.7	7
429	The quantitative analysis of nano-clay dispersion in polymer nanocomposites by small angle X-ray scattering combined with electron microscopy. Polymer, 2010, 51, 1437-1449.	1.8	73
430	A new possibility for microstructural investigation of clay-based polymer nanocomposite by focused ion beam tomography. Polymer, 2010, 51, 3966-3970.	1.8	55
431	Mechanism of enhanced tenacity in a polymer nanocomposite studied by small-angle X-ray scattering and electron microscopy. Polymer, 2010, 51, 4860-4866.	1.8	18
432	Nanoscience and Nanotechnology in South Africa. South African Journal of Science, 2010, 105, .	0.3	1

#	Article	IF	CITATIONS
433	Thermal and Rheological Properties of Biodegradable Poly[(butylene succinate)-co-adipate] Nanocomposites. Journal of Nanoscience and Nanotechnology, 2010, 10, 4184-4195.	0.9	17
434	CoS-Carbon Nanotube Heterostructure: One-Step Synthesis and Optical Properties. Journal of Nanoscience and Nanotechnology, 2010, 10, 4279-4285.	0.9	2
435	Zinc Oxide Epitaxial Thin Film Deposited Over Carbon on Various Substrate by Pulsed Laser Deposition Technique. Journal of Nanoscience and Nanotechnology, 2010, 10, 5602-5611.	0.9	62
436	The Study on the Time Dependency and the Stability of Cobalt Sulphide Nanoparticles Under an Electron Beam. Journal of Nanoscience and Nanotechnology, 2010, 10, 5594-5601.	0.9	4
437	Molecular Dynamics Simulation Studies of Structural and Mechanical Properties of Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 8083-8087.	0.9	6
438	The state of the art proton exchange membrane fuel cells for clean energy. , 2010, , .		4
439	Controlled Two-Step Amine Functionalization of Multi-Walled Carbon Nanotubes for the Preparation of Polylactide/Carbon Nanotubes Composites. Advanced Science Letters, 2010, 3, 117-122.	0.2	9
440	Thermal and Rheological Properties of POSS-Containing Poly(methyl methacrylate) Nanocomposites. Advanced Science Letters, 2010, 3, 123-129.	0.2	7
441	Viscoelastic Properties of Clayâ€Containing Nanocomposites of Thermotropic Liquidâ€Crystal Polymer. Macromolecular Chemistry and Physics, 2009, 210, 161-171.	1.1	5
442	Use of Pristine Clay Platelets as a Suspension Stabilizer for the Synthesis of Poly(methyl) Tj ETQq0 0 0 rgBT /Over	rlock 10 Tf	f 50 382 Td (r 16
443	Macromol. Chem. Phys. 13-14/2009. Macromolecular Chemistry and Physics, 2009, 210, NA-NA.	1.1	O
444	Visualisation of Nanoclay Dispersion in Polymer Matrix by Highâ€Resolution Electron Microscopy Combined with Electron Tomography. Macromolecular Materials and Engineering, 2009, 294, 281-286.	1.7	24
445	Recent Progress on Nafionâ€Based Nanocomposite Membranes for Fuel Cell Applications. Macromolecular Materials and Engineering, 2009, 294, 719-738.	1.7	116
446	Highâ€Performance Carbon Nanotubeâ€Reinforced Bioplastic. Macromolecular Materials and Engineering, 2009, 294, 839-846.	1.7	14
447	Influence of bases on hydrothermal synthesis of titanate nanostructures. Applied Physics A: Materials Science and Processing, 2009, 94, 963-973.	1.1	56
448	The use of calcination in exposing the entrapped Fe particles fromÂmulti-walled carbon nanotubes grown by chemical vapour deposition. Applied Physics A: Materials Science and Processing, 2009, 94, 585-591.	1.1	2
449	Morphological and optical properties of MnS/polyvinylcarbazole hybrid composites. Physica B: Condensed Matter, 2009, 404, 4461-4465.	1.3	11
450	Morphology and properties of nanostructured materials based on polypropylene/poly(butylene) Tj ETQq0 0 0 rgB	T Overloo	ck 10 Tf 50 62

#	Article	IF	Citations
451	Optical and structural characterization of nickel selenide nanoparticles synthesized by simple methods. Journal of Crystal Growth, 2009, 311, 3924-3932.	0.7	58
452	Thermal properties of poly(ethylene succinate) nanocomposite. Polymer, 2009, 50, 4635-4643.	1.8	41
453	The effect of the carbon nanotubes surface oxidation on the morphology and properties of poly(N-vinylcarbazole) coated multi-walled carbon nanotube nanocables. Synthetic Metals, 2009, 159, 1158-1164.	2.1	5
454	A Comparison of Purification Procedures for Multi-Walled Carbon Nanotubes Produced by Chemical Vapour Deposition. Journal of Nanoscience and Nanotechnology, 2009, 9, 5431-5435.	0.9	5
455	Morphology and Properties of Core–Shell Nanocomposites of Poly(N-vinylcarbazole) with Multi-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2009, 9, 5223-5230.	0.9	1
456	Nanocomposites Based on Polyethylene and Polyhedral Oligomeric Silsesquioxanes, 1 $\hat{a} \in \mathbb{C}$ Microstructure, Thermal and Thermomechanical Properties. Macromolecular Materials and Engineering, 2008, 293, 752-762.	1.7	64
457	Highly Conductive Core–Shell Nanocomposite of Poly(<i>N</i> â€vinylcarbazole)–Polypyrrole with Multiwalled Carbon Nanotubes. Macromolecular Rapid Communications, 2008, 29, 1582-1587.	2.0	47
458	The bulk polymerisation of N-vinylcarbazole in the presence of both multi- and single-walled carbon nanotubes: A comparative study. Polymer, 2008, 49, 2857-2865.	1.8	27
459	Influence of degree of intercalation on the crystal growth kinetics of poly[(butylene) Tj ETQq1 1 0.784314 rgBT	/Overlock 2.6	10 ₄₇ 50 422
460	A Facile Route for the Synthesis of Poly(N-vinylcarbazole)/Manganese Sulphide Quantum Dots Nanocomposites with Enhanced Optical Properties. Journal of Nanoscience and Nanotechnology, 2008, 8, 6031-6037.	0.9	2
461	Cross-Sectional STEM Observation of Nanoparticle-Attached Silicon Wafer: Specimen Prepared by Focused Ion-Beam. Journal of Nanoscience and Nanotechnology, 2008, 8, 1518-1522.	0.9	18
462	Preparation and Characterization of Polymer/Multi-Walled Carbon Nanotube Nanocomposites. Solid State Phenomena, 2008, 140, 97-102.	0.3	3
463	Synthesis of Titania Nanostructures and their Application as Catalyst Supports for Hydrogenation and Oxidation Reactions. Solid State Phenomena, 2008, 140, 61-68.	0.3	2
464	Nanomagnetism. Journal of Nanoscience and Nanotechnology, 2008, 8, 2729-2730.	0.9	0
465	Conducting Nanocomposites of Poly(N-vinylcarbazole) with Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2008, 8, 1728-1734.	0.9	4
466	Purification of Multi-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2008, 8, 6187-6207.	0.9	35
467	Preparation and Characterization of Dysprosium (Dy) Ultrafine Nanocrystalline Structures. Journal of Nanoscience and Nanotechnology, 2008, 8, 961-966.	0.9	8
468	Purification of Laser Synthesized SWCNTs by Different Methods: A Comparative Study. Journal of Nanoscience and Nanotechnology, 2008, 8, 6023-6030.	0.9	2

#	Article	IF	Citations
469	A special issue on polymer nanocomposites. Journal of Nanoscience and Nanotechnology, 2008, 8, 1557-8.	0.9	0
470	Thermal and thermomechanical properties of poly(butylene succinate) nanocomposites. Journal of Nanoscience and Nanotechnology, 2008, 8, 1679-89.	0.9	0
471	Conducting nanocomposites of poly(N-vinylcarbazole) with single-walled carbon nanotubes. Journal of Nanoscience and Nanotechnology, 2008, 8, 1728-34.	0.9	0
472	Nonisothermal crystallization kinetics of poly(ethylene terephthalate) nanocomposites. Journal of Nanoscience and Nanotechnology, 2008, 8, 1812-22.	0.9	0
473	Purification of laser synthesized SWCNTs by different methods: a comparative study. Journal of Nanoscience and Nanotechnology, 2008, 8, 6023-30.	0.9	0
474	Polylactide Based Nanostructured Biomaterials and Their Applications. Journal of Nanoscience and Nanotechnology, 2007, 7, 2596-2615.	0.9	91
475	Purification of Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2007, 7, 3011-3047.	0.9	31
476	Dispersion Characteristics and Properties of Poly(methyl methacrylate)/Multi-Walled Carbon Nanotubes Nanocomposites. Journal of Nanoscience and Nanotechnology, 2007, 7, 2349-2355.	0.9	22
477	Effect of Organoclay on the Orientation and Thermal Properties of Liquidâ€Crystalline. Macromolecular Chemistry and Physics, 2007, 208, 1979-1991.	1.1	10
478	Effect of Organoclay on the Morphology and Properties of Poly(propylene)/Poly[(butylene) Tj ETQq0 0 0 rgBT /O	verlock 10 1.7	Tf 50 382 To
479	Macromol. Mater. Eng. 6/2007. Macromolecular Materials and Engineering, 2007, 292, 792-792.	1.7	0
480	Morphology and Electrical Conductivity of Poly(<i>N</i> à€vinylcarbazole)/Carbon Nanotubes Nanocomposite Synthesized by Solid State Polymerization. Macromolecular Rapid Communications, 2007, 28, 2224-2229.	2.0	20
481	Thermal and thermomechanical properties of poly[(butylene succinate)-co-adipate] nanocomposite. Polymer Degradation and Stability, 2007, 92, 802-812.	2.7	73
482	Intercalation/Exfoliation Mechanism of Hybrid Formation in Polypropylene/Lamellar Mesostructured Silica Nanocomposites. Journal of Nanoscience and Nanotechnology, 2006, 6, 523-529.	0.9	9
483	Morphology and properties of organoclay modified polycarbonate/poly(methyl methacrylate) blend. Polymer Engineering and Science, 2006, 46, 1121-1129.	1.5	106
484	Structure and properties of nanocomposites based on poly(butylene succinate) and organically modified montmorillonite. Journal of Applied Polymer Science, 2006, 102, 777-785.	1.3	70
485	Crystallization Behavior of Poly[(butylene succinate)-co-adipate] Nanocomposite. Macromolecular Chemistry and Physics, 2006, 207, 1207-1219.	1.1	41
486	Polyethylene/Clay Nanocomposites Prepared by Polymerization Compounding Method. Journal of Nanoscience and Nanotechnology, 2006, 6, 530-535.	0.9	15

#	Article	IF	CITATIONS
487	Dispersion of Multi-Walled Carbon Nanotubes in Biodegradable Poly(butylene succinate) Matrix. Journal of Nanoscience and Nanotechnology, 2006, 6, 2191-2195.	0.9	57
488	Biodegradable polymer/layered silicate nanocomposites. , 2006, , 57-129.		8
489	Poly(butylene sucinate-co-adipate)/montmorillonite nanocomposites: effect of organic modifier miscibility on structure, properties, and viscoelasticity. Polymer, 2005, 46, 12430-12439.	1.8	107
490	Structure and Properties of Nanocomposites Based on Poly(butylene succinate-co-adipate) and Organically Modified Montmorillonite. Macromolecular Materials and Engineering, 2005, 290, 759-768.	1.7	127
491	Compatibilization Efficiency of Organoclay in an Immiscible Polycarbonate/Poly(methyl methacrylate) Blend. Macromolecular Rapid Communications, 2005, 26, 450-455.	2.0	142
492	Effect of Organic Modification on the Compatibilization Efficiency of Clay in an Immiscible Polymer Blend. Macromolecular Rapid Communications, 2005, 26, 1639-1646.	2.0	155
493	Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Progress in Materials Science, 2005, 50, 962-1079.	16.0	1,417
494	Organically Modified Layered Titanate: A New Nanofiller to Improve the Performance of Biodegradable Polylactide. Macromolecular Rapid Communications, 2004, 25, 1359-1364.	2.0	92
495	Role of organically modified layered silicate as an active interfacial modifier in immiscible polystyrene/polypropylene blends. Polymer, 2004, 45, 8403-8413.	1.8	399
496	New polylactide/layered silicate nanocomposites. 5. Designing of materials with desired properties. Polymer, 2003, 44, 6633-6646.	1.8	278
497	Intercalated Polycarbonate/Clay Nanocomposites: Nanostructure Control and Foam Processing. Macromolecular Materials and Engineering, 2003, 288, 543-548.	1.7	119
498	New Polylactide/Layered Silicate Nanocomposites, 6. Macromolecular Materials and Engineering, 2003, 288, 936-944.	1.7	183
499	Control of Biodegradability of Polylactide via Nanocomposite Technology. Macromolecular Materials and Engineering, 2003, 288, 203-208.	1.7	165
500	Biodegradable Polylactide and Its Nanocomposites: Opening a New Dimension for Plastics and Composites. Macromolecular Rapid Communications, 2003, 24, 815-840.	2.0	416
501	Well-Controlled Biodegradable Nanocomposite Foams: From Microcellular to Nanocellular. Macromolecular Rapid Communications, 2003, 24, 457-461.	2.0	182
502	Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 2003, 28, 1539-1641.	11.8	6,062
503	New poly(butylene succinate)/layered silicate nanocomposites. II. Effect of organically modified layered silicates on structure, properties, melt rheology, and biodegradability. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 3160-3172.	2.4	154
504	New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer, 2003, 44, 857-866.	1.8	518

#	Article	IF	Citations
505	Crystallization Behavior and Morphology of Biodegradable Polylactide/Layered Silicate Nanocomposite. Macromolecules, 2003, 36, 7126-7131.	2.2	399
506	Structureâ^Property Relationship in Biodegradable Poly(butylene succinate)/Layered Silicate Nanocomposites. Macromolecules, 2003, 36, 2355-2367.	2.2	590
507	New Polylactide/Layered Silicate Nanocomposites. 3. High-Performance Biodegradable Materials. Chemistry of Materials, 2003, 15, 1456-1465.	3.2	443
508	New polylactide/layered silicate nanocomposites, 4. Structure, properties and biodegradability. Composite Interfaces, 2003, 10, 435-450.	1.3	35
509	Biodegradable Polylactide/Montmorillonite Nanocomposites. Journal of Nanoscience and Nanotechnology, 2003, 3, 503-510.	0.9	106
510	New Poly(butylene succinate)/Layered Silicate Nanocomposites: Preparation and Mechanical Properties. Journal of Nanoscience and Nanotechnology, 2002, 2, 171-176.	0.9	88
511	Preparation and Properties of Polylactide/Layered Silicate Nanocomposite Kobunshi Ronbunshu, 2002, 59, 760-766.	0.2	14
512	Novel Porous Ceramic Material via Burning of Polylactide/Layered Silicate Nanocomposite. Nano Letters, 2002, 2, 423-425.	4.5	79
513	Polylactide-Layered Silicate Nanocomposite:  A Novel Biodegradable Material. Nano Letters, 2002, 2, 1093-1096.	4.5	428
514	New Polylactide/Layered Silicate Nanocomposites. 1. Preparation, Characterization, and Properties. Macromolecules, 2002, 35, 3104-3110.	2.2	475
515	Synthesis and evaluation of conducting polypyrrole/Al2O3 nanocomposites in aqueous and non-aqueous medium. Materials Research Bulletin, 2002, 37, 813-824.	2.7	15
516	New Polylactide/Layered Silicate Nanocomposite: Nanoscale Control Over Multiple Properties. Macromolecular Rapid Communications, 2002, 23, 943-947.	2.0	153
517	A conducting nanocomposite of poly(N-vinylcarbazole) with buckminsterfullerene. Synthetic Metals, 2001, 123, 135-139.	2.1	26
518	Recent Progress in Synthesis and Evaluation of Polymer-Montmorillonite Nanocomposites. Advances in Polymer Science, 2001, , 167-221.	0.4	393
519	Water-dispersible nanocomposites of polyaniline and montmorillonite. Journal of Applied Polymer Science, 2000, 77, 2948-2956.	1.3	59
520	Water-dispersible conducting nanocomposites of polyaniline and poly(N-vinylcarbazole) with nanodimensional zirconium dioxide. Synthetic Metals, 2000, 108, 231-236.	2.1	140
521	Preparation and evaluation of composites from montmorillonite and some heterocyclic polymers. II. A nanocomposite from N-vinylcarbazole and ferric chloride-impregnated montmorillonite polymerization system. Journal of Applied Polymer Science, 1999, 73, 2971-2976.	1.3	37
522	Water dispersible conducting nanocomposites of poly(N-vinylcarbazole), polypyrrole and polyaniline with nanodimensional manganese (IV) oxide. Synthetic Metals, 1999, 105, 99-105.	2.1	78

#	Article	IF	CITATIONS
523	A Colloidal Silica Poly(N-Vinylcarbazole) Nanocomposite Dispersible in Aqueous and Nonaqueous Media. Materials Research Bulletin, 1998, 33, 533-538.	2.7	27
524	Preparation and evaluation of composites from montmorillonite and some heterocyclic polymers. 1: Poly(N-vinylcarbazole)–montmorillonite nanocomposite system. Polymer, 1998, 39, 6423-6428.	1.8	96
525	Epoxy-based Carbon Nanotubes Reinforced Composites., 0, , .		8
526	Melt-State Viscoelastic Properties of Clay-Containing Polymer Nanocomposites., 0,, 75-118.		0
527	Biorenewables: Properties and Functions in Materials Application. ACS Symposium Series, 0, , 129-161.	0.5	0