Elisabetta Dejana

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2397747/elisabetta-dejana-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

237	30,575	89	173
papers	citations	h-index	g-index
249	33,871 ext. citations	10.4	7.08
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
237	Inflammation and neutrophil extracellular traps in cerebral cavernous malformation <i>Cellular and Molecular Life Sciences</i> , 2022 , 79, 206	10.3	1
236	A murine model of cerebral cavernous malformations with acute hemorrhage <i>IScience</i> , 2022 , 25, 1039	43 .1	O
235	Transcriptome Analysis Reveals Altered Expression of Genes Involved in Hypoxia, Inflammation and Immune Regulation in Pdcd10-Depleted Mouse Endothelial Cells. <i>Genes</i> , 2022 , 13, 961	4.2	2
234	Propranolol Reduces the Development of Lesions and Rescues Barrier Function in Cerebral Cavernous Malformations: A Preclinical Study. <i>Stroke</i> , 2021 , 52, 1418-1427	6.7	9
233	Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. <i>Trends in Molecular Medicine</i> , 2021 , 27, 314-331	11.5	54
232	A dual role of YAP in driving TGFEmediated endothelial-to-mesenchymal transition. <i>Journal of Cell Science</i> , 2021 , 134,	5.3	1
231	Adaptive mechanoproperties mediated by the formin FMN1 characterize glioblastoma fitness for invasion. <i>Developmental Cell</i> , 2021 , 56, 2841-2855.e8	10.2	1
230	Reversibly Modulating the Blood-Brain Barrier by Laser Stimulation of Molecular-Targeted Nanoparticles. <i>Nano Letters</i> , 2021 , 21, 9805-9815	11.5	7
229	The multifaceted gene. <i>Genes and Diseases</i> , 2021 , 8, 798-813	6.6	2
228	Propranolol for familial cerebral cavernous malformation (Treat_CCM): study protocol for a randomized controlled pilot trial. <i>Trials</i> , 2020 , 21, 401	2.8	18
227	Vascular permeability in retinopathy is regulated by VEGFR2 Y949 signaling to VE-cadherin. <i>ELife</i> , 2020 , 9,	8.9	22
226	Mapping endothelial-cell diversity in cerebral cavernous malformations at single-cell resolution. <i>ELife</i> , 2020 , 9,	8.9	13
225	JAM-A Acts via C/EBP-Ito Promote Claudin-5 Expression and Enhance Endothelial Barrier Function. <i>Circulation Research</i> , 2020 , 127, 1056-1073	15.7	17
224	Fgfbp1 promotes blood-brain barrier development by regulating collagen IV deposition and maintaining Wnt/Etatenin signaling. <i>Development (Cambridge)</i> , 2020 , 147,	6.6	10
223	Advancing brain barriers RNA sequencing: guidelines from experimental design to publication. <i>Fluids and Barriers of the CNS</i> , 2020 , 17, 51	7	6
222	c-Src controls stability of sprouting blood vessels in the developing retina independently of cell-cell adhesion through focal adhesion assembly. <i>Development (Cambridge)</i> , 2020 , 147,	6.6	7
221	Endothelial ECatenin Signaling Supports Postnatal Brain and Retinal Angiogenesis by Promoting Sprouting, Tip Cell Formation, and VEGFR (Vascular Endothelial Growth Factor Receptor) 2 Expression. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2019 , 39, 2273-2288	9.4	23

(2017-2019)

220	Endothelial cell clonal expansion in the development of cerebral cavernous malformations. <i>Nature Communications</i> , 2019 , 10, 2761	17.4	48
219	Endothelial cell-derived nidogen-1 inhibits migration of SK-BR-3 breast cancer cells. <i>BMC Cancer</i> , 2019 , 19, 312	4.8	8
218	CDC42 Deletion Elicits Cerebral Vascular Malformations via Increased MEKK3-Dependent KLF4 Expression. <i>Circulation Research</i> , 2019 , 124, 1240-1252	15.7	27
217	Transient Photoinactivation of Cell Membrane Protein Activity without Genetic Modification by Molecular Hyperthermia. <i>ACS Nano</i> , 2019 , 13, 12487-12499	16.7	8
216	A novel L1CAM isoform with angiogenic activity generated by NOVA2-mediated alternative splicing. <i>ELife</i> , 2019 , 8,	8.9	24
215	Fine-Tuning of Sox17 and Canonical Wnt Coordinates the Permeability Properties of the Blood-Brain Barrier. <i>Circulation Research</i> , 2019 , 124, 511-525	15.7	28
214	Emerging Pharmacologic Targets in Cerebral Cavernous Malformation and Potential Strategies to Alter the Natural History of a Difficult Disease: A Review. <i>JAMA Neurology</i> , 2019 , 76, 492-500	17.2	21
213	VE-Cadherin-Mediated Epigenetic Regulation of Endothelial Gene Expression. <i>Circulation Research</i> , 2018 , 122, 231-245	15.7	32
212	Growth Differentiation Factor 6 Promotes Vascular Stability by Restraining Vascular Endothelial Growth Factor Signaling. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2018 , 38, 353-362	9.4	12
211	Endothelial trans-differentiation in glioblastoma recurring after radiotherapy. <i>Modern Pathology</i> , 2018 , 31, 1361-1366	9.8	17
210	Vascular Endothelial (VE)-Cadherin, Endothelial Adherens Junctions, and Vascular Disease. <i>Cold Spring Harbor Perspectives in Biology</i> , 2018 , 10,	10.2	40
209	Resident Endothelial Progenitors Make Themselves at Home. <i>Cell Stem Cell</i> , 2018 , 23, 153-155	18	9
208	CD93 promotes 1 integrin activation and fibronectin fibrillogenesis during tumor angiogenesis. <i>Journal of Clinical Investigation</i> , 2018 , 128, 3280-3297	15.9	48
207	Endothelial cell transitions. <i>Science</i> , 2018 , 362, 746-747	33.3	17
206	Peg3/PW1 Is a Marker of a Subset of Vessel Associated Endothelial Progenitors. <i>Stem Cells</i> , 2017 , 35, 1328-1340	5.8	15
205	The molecular basis of endothelial cell plasticity. <i>Nature Communications</i> , 2017 , 8, 14361	17.4	208
204	SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development. <i>Development (Cambridge)</i> , 2017 , 144, 2629-2639	6.6	28
203	Endothelial cell disease: emerging knowledge from cerebral cavernous malformations. <i>Current Opinion in Hematology</i> , 2017 , 24, 256-264	3.3	19

202	Deregulated TGF-I/BMP Signaling in Vascular Malformations. Circulation Research, 2017, 121, 981-999	15.7	57
201	Endothelial-to-Mesenchymal Transition in Bone Marrow and Spleen of Primary Myelofibrosis. <i>American Journal of Pathology</i> , 2017 , 187, 1879-1892	5.8	12
200	VE-Cadherin Phosphorylation Regulates Endothelial Fluid Shear Stress Responses through the Polarity Protein LGN. <i>Current Biology</i> , 2017 , 27, 2219-2225.e5	6.3	28
199	Targeting Vascular Endothelial-Cadherin in Tumor-Associated Blood Vessels Promotes T-cell-Mediated Immunotherapy. <i>Cancer Research</i> , 2017 , 77, 4434-4447	10.1	36
198	ECatenin Is Required for Endothelial Cyp1b1 Regulation Influencing Metabolic Barrier Function. Journal of Neuroscience, 2016 , 36, 8921-35	6.6	27
197	Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. <i>Nature Communications</i> , 2016 , 7, 12422	17.4	130
196	The endothelial adaptor molecule TSAd is required for VEGF-induced angiogenic sprouting through junctional c-Src activation. <i>Science Signaling</i> , 2016 , 9, ra72	8.8	20
195	Glycolytic regulation of cell rearrangement in angiogenesis. <i>Nature Communications</i> , 2016 , 7, 12240	17.4	89
194	NEURODEVELOPMENT. Oligodendrocytes follow blood vessel trails in the brain. <i>Science</i> , 2016 , 351, 34	1 <i>9</i> 3.3	5
193	Endothelial Cells Lining Sporadic Cerebral Cavernous Malformation Cavernomas Undergo Endothelial-to-Mesenchymal Transition. <i>Stroke</i> , 2016 , 47, 886-90	6.7	41
192	The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling. <i>Journal of General Physiology</i> , 2016 , 147, 1472OIA9	3.4	
191	Partial loss of VE-cadherin improves long-term outcome and cerebral blood flow after transient brain ischemia in mice. <i>BMC Neurology</i> , 2016 , 16, 144	3.1	9
190	KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. <i>EMBO Molecular Medicine</i> , 2016 , 8, 6-24	12	108
189	VEGFR2 pY949 signalling regulates adherens junction integrity and metastatic spread. <i>Nature Communications</i> , 2016 , 7, 11017	17.4	77
188	Sulindac metabolites decrease cerebrovascular malformations in CCM3-knockout mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 8421-6	11.5	77
187	Vascular endothelial growth factor C disrupts the endothelial lymphatic barrier to promote colorectal cancer invasion. <i>Gastroenterology</i> , 2015 , 148, 1438-51.e8	13.3	76
186	PW1/Peg3 expression regulates key properties that determine mesoangioblast stem cell competence. <i>Nature Communications</i> , 2015 , 6, 6364	17.4	57
185	The alternative splicing factor Nova2 regulates vascular development and lumen formation. <i>Nature Communications</i> , 2015 , 6, 8479	17.4	37

(2014-2015)

184	Defective autophagy is a key feature of cerebral cavernous malformations. <i>EMBO Molecular Medicine</i> , 2015 , 7, 1403-17	12	83
183	The role of microvascular endothelial WNT signaling the formation of the blood brain barrier. <i>SpringerPlus</i> , 2015 , 4, L47		2
182	New insights in the control of vascular permeability: vascular endothelial-cadherin and other players. <i>Current Opinion in Hematology</i> , 2015 , 22, 267-72	3.3	45
181	Lessons from the first ecancer symposium on angiogenesis in gastric cancer. <i>Ecancermedicalscience</i> , 2015 , 9, 553	2.7	
180	A gut-vascular barrier controls the systemic dissemination of bacteria. <i>Science</i> , 2015 , 350, 830-4	33.3	269
179	The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling. <i>Journal of Cell Biology</i> , 2015 , 211, 1177-92	7-3	47
178	The endothelial transcription factor ERG promotes vascular stability and growth through Wnt/Ecatenin signaling. <i>Developmental Cell</i> , 2015 , 32, 82-96	10.2	124
177	The Pathological Modifications of the Blood Brain Barrier and Cerebral Cavernous Malformations. <i>FASEB Journal</i> , 2015 , 29, 81.1	0.9	
176	Inhibition of endothelial FAK activity prevents tumor metastasis by enhancing barrier function. <i>Journal of Cell Biology</i> , 2014 , 204, 247-63	7.3	121
175	Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell, 2014, 26, 190-206	24.3	284
174	Signaling pathways in the specification of arteries and veins. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2014 , 34, 2372-7	9.4	66
173	VE-cadherin at a glance. <i>Cell and Tissue Research</i> , 2014 , 355, 515-22	4.2	34
172	Progesterone receptor in the vascular endothelium triggers physiological uterine permeability preimplantation. <i>Cell</i> , 2014 , 156, 549-62	56.2	49
171	An EMMPRIN-Etatenin-Nm23 complex drives ATP production and actomyosin contractility at endothelial junctions. <i>Journal of Cell Science</i> , 2014 , 127, 3768-81	5.3	20
170	Targeting endothelial junctional adhesion molecule-A/EPAC/Rap-1 axis as a novel strategy to increase stem cell engraftment in dystrophic muscles. <i>EMBO Molecular Medicine</i> , 2014 , 6, 239-58	12	30
169	Transcriptional regulation of arterial differentiation via Wnt, Sox and Notch. <i>Current Opinion in Hematology</i> , 2014 , 21, 229-34	3.3	27
168	Angiopoietin 2 regulates the transformation and integrity of lymphatic endothelial cell junctions. <i>Genes and Development</i> , 2014 , 28, 1592-603	12.6	74
167	Differential adhesion drives angiogenesis. <i>Nature Cell Biology</i> , 2014 , 16, 305-6	23.4	10

166	Endothelial deficiency of L1 reduces tumor angiogenesis and promotes vessel normalization. Journal of Clinical Investigation, 2014 , 124, 4335-50	15.9	39
165	VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. <i>Developmental Cell</i> , 2013 , 26, 441-54	10.2	465
164	Endothelial adherens junctions at a glance. Journal of Cell Science, 2013, 126, 2545-9	5.3	131
163	The role of VE-cadherin in vascular morphogenesis and permeability control. <i>Progress in Molecular Biology and Translational Science</i> , 2013 , 116, 119-44	4	121
162	Accelerated endothelial wound healing on microstructured substrates under flow. <i>Biomaterials</i> , 2013 , 34, 1488-97	15.6	61
161	VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation. <i>Nature Communications</i> , 2013 , 4, 1672	17.4	103
160	Sox17 is indispensable for acquisition and maintenance of arterial identity. <i>Nature Communications</i> , 2013 , 4, 2609	17.4	163
159	EndMT contributes to the onset and progression of cerebral cavernous malformations. <i>Nature</i> , 2013 , 498, 492-6	50.4	325
158	Vascular endothelial growth factor-angiopoietin chimera with improved properties for therapeutic angiogenesis. <i>Circulation</i> , 2013 , 127, 424-34	16.7	47
157	Wnt activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro. <i>PLoS ONE</i> , 2013 , 8, e70233	3.7	70
156	Overlapping and divergent signaling pathways of N-cadherin and VE-cadherin in endothelial cells. <i>Blood</i> , 2012 , 119, 2159-70	2.2	78
155	Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo. <i>Nature Communications</i> , 2012 , 3, 1208	17.4	299
154	Vascular endothelial-cadherin and vascular stability. Current Opinion in Hematology, 2012 , 19, 218-23	3.3	134
153	Ve-ptp modulates vascular integrity by promoting adherens junction maturation. <i>PLoS ONE</i> , 2012 , 7, e51245	3.7	14
152	The molecular basis of the blood brain barrier differentiation and maintenance. Is it still a mystery?. <i>Pharmacological Research</i> , 2011 , 63, 165-71	10.2	66
151	Abrogation of junctional adhesion molecule-A expression induces cell apoptosis and reduces breast cancer progression. <i>PLoS ONE</i> , 2011 , 6, e21242	3.7	41
150	Adhesion molecule signalling: not always a sticky business. <i>Nature Reviews Molecular Cell Biology</i> , 2011 , 12, 189-97	48.7	188
149	Developmental timing of CCM2 loss influences cerebral cavernous malformations in mice. <i>Journal of Experimental Medicine</i> , 2011 , 208, 1835-47	16.6	98

(2008-2010)

148	News from the brain: the GPR124 orphan receptor directs brain-specific angiogenesis. <i>Science Translational Medicine</i> , 2010 , 2, 58ps53	17.5	6
147	CCM1 regulates vascular-lumen organization by inducing endothelial polarity. <i>Journal of Cell Science</i> , 2010 , 123, 1073-80	5.3	140
146	The role of wnt signaling in physiological and pathological angiogenesis. <i>Circulation Research</i> , 2010 , 107, 943-52	15.7	250
145	Inactivation of junctional adhesion molecule-A enhances antitumoral immune response by promoting dendritic cell and T lymphocyte infiltration. <i>Cancer Research</i> , 2010 , 70, 1759-65	10.1	22
144	The Wnt/beta-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/Notch signaling. <i>Developmental Cell</i> , 2010 , 18, 938-49	10.2	225
143	Role of synectin in lymphatic development in zebrafish and frogs. <i>Blood</i> , 2010 , 116, 3356-66	2.2	33
142	Stable vascular connections and remodeling require full expression of VE-cadherin in zebrafish embryos. <i>PLoS ONE</i> , 2009 , 4, e5772	3.7	93
141	Sox7 and Sox17 are strain-specific modifiers of the lymphangiogenic defects caused by Sox18 dysfunction in mice. <i>Development (Cambridge)</i> , 2009 , 136, 2385-91	6.6	69
140	JAM-A promotes neutrophil chemotaxis by controlling integrin internalization and recycling. <i>Journal of Cell Science</i> , 2009 , 122, 268-77	5.3	75
139	VE-Cadherin-mediated cell-cell interaction suppresses sprouting via signaling to MLC2 phosphorylation. <i>Current Biology</i> , 2009 , 19, 668-74	6.3	122
138	Organization and signaling of endothelial cell-to-cell junctions in various regions of the blood and lymphatic vascular trees. <i>Cell and Tissue Research</i> , 2009 , 335, 17-25	4.2	148
137	The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. <i>Developmental Cell</i> , 2009 , 16, 209-21	10.2	569
136	The molecular basis of vascular lumen formation in the developing mouse aorta. <i>Developmental Cell</i> , 2009 , 17, 505-15	10.2	272
135	Levels of circulating pro-angiogenic cells predict cardiovascular outcomes in patients with chronic heart failure. <i>Journal of Cardiac Failure</i> , 2009 , 15, 747-55	3.3	8
134	Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. <i>Cell</i> , 2009 , 136, 839-851	56.2	642
133	Endothelial cell migration directs testis cord formation. <i>Developmental Biology</i> , 2009 , 326, 112-20	3.1	136
132	Endothelial cell activation leads to neutrophil transmigration as supported by the sequential roles of ICAM-2, JAM-A, and PECAM-1. <i>Blood</i> , 2009 , 113, 6246-57	2.2	151
131	VE-cadherin is a critical endothelial regulator of TGF-beta signalling. <i>EMBO Journal</i> , 2008 , 27, 993-1004	13	126

130	Deciphering the functional role of endothelial junctions by using in vivo models. <i>EMBO Reports</i> , 2008 , 9, 742-7	6.5	27
129	Sox18 induces development of the lymphatic vasculature in mice. <i>Nature</i> , 2008 , 456, 643-7	50.4	405
128	Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. <i>Nature Cell Biology</i> , 2008 , 10, 923-34	23.4	459
127	Adherens junctions. <i>Current Biology</i> , 2008 , 18, R1080-2	6.3	30
126	Unique role of junctional adhesion molecule-a in maintaining mucosal homeostasis in inflammatory bowel disease. <i>Gastroenterology</i> , 2008 , 135, 173-84	13.3	184
125	Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell, 2008, 3, 625-36	18	487
124	Methods of Stochastic Geometry and Related Statistical Problems in the Analysis and Therapy of Tumour Growth and Tumour Driven Angiogenesis 2008 , 1-37		2
123	Wnt/beta-catenin signaling controls development of the blood-brain barrier. <i>Journal of Cell Biology</i> , 2008 , 183, 409-17	7-3	550
122	Combinatorial interaction between CCM pathway genes precipitates hemorrhagic stroke. <i>DMM Disease Models and Mechanisms</i> , 2008 , 1, 275-81	4.1	60
121	The role of adherens junctions and VE-cadherin in the control of vascular permeability. <i>Journal of Cell Science</i> , 2008 , 121, 2115-22	5.3	704
120	Sox18 and Sox7 play redundant roles in vascular development. <i>Blood</i> , 2008 , 111, 2657-66	2.2	155
119	Phosphorylation of vascular endothelial cadherin controls lymphocyte emigration. <i>Journal of Cell Science</i> , 2008 , 121, 29-37	5.3	137
118	Transcription factor Erg regulates angiogenesis and endothelial apoptosis through VE-cadherin. <i>Blood</i> , 2008 , 111, 3498-506	2.2	188
117	Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. <i>Journal of Immunology</i> , 2007 , 178, 6017-22	5.3	223
116	Effects of exercise training on endothelial progenitor cells in patients with chronic heart failure. <i>Journal of Cardiac Failure</i> , 2007 , 13, 701-8	3.3	84
115	Hepatocyte-conditioned medium sustains endothelial differentiation of human hematopoietic-endothelial progenitors. <i>Hepatology</i> , 2007 , 45, 1218-28	11.2	12
114	The role of junctional adhesion molecules in vascular inflammation. <i>Nature Reviews Immunology</i> , 2007 , 7, 467-77	36.5	387
113	Foxs and Ets in the transcriptional regulation of endothelial cell differentiation and angiogenesis. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> , 2007 , 1775, 298-312	11.2	75

112	The control of endothelial cell functions by adherens junctions. <i>Novartis Foundation Symposium</i> , 2007 , 283, 4-13; discussion 13-7, 238-41		27
111	SIRT1 controls endothelial angiogenic functions during vascular growth. <i>Genes and Development</i> , 2007 , 21, 2644-58	12.6	464
110	Functionally specialized junctions between endothelial cells of lymphatic vessels. <i>Journal of Experimental Medicine</i> , 2007 , 204, 2349-62	16.6	670
109	JAM-A mediates neutrophil transmigration in a stimulus-specific manner in vivo: evidence for sequential roles for JAM-A and PECAM-1 in neutrophil transmigration. <i>Blood</i> , 2007 , 110, 1848-56	2.2	112
108	Adherens junctions in endothelial cells regulate vessel maintenance and angiogenesis. <i>Thrombosis Research</i> , 2007 , 120 Suppl 2, S1-6	8.2	68
107	Functionally specialized junctions between endothelial cells of lymphatic vessels. <i>Journal of Cell Biology</i> , 2007 , 178, i15-i15	7.3	
106	Importance of junctional adhesion molecule-A for neointimal lesion formation and infiltration in atherosclerosis-prone mice. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2006 , 26, e10-3	9.4	48
105	Increase in vascular permeability and vasodilation are critical for proangiogenic effects of stem cell therapy. <i>Circulation</i> , 2006 , 114, 328-38	16.7	74
104	The role of JAM-A and PECAM-1 in modulating leukocyte infiltration in inflamed and ischemic tissues. <i>Journal of Leukocyte Biology</i> , 2006 , 80, 714-8	6.5	111
103	The multiple languages of endothelial cell-to-cell communication. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2006 , 26, 1431-8	9.4	80
102	Endothelial cadherins and tumor angiogenesis. Experimental Cell Research, 2006, 312, 659-67	4.2	112
101	Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. <i>Journal of Cell Biology</i> , 2006 , 174, 593-604	7-3	428
100	Generation and characterization of a mouse lymphatic endothelial cell line. <i>Cell and Tissue Research</i> , 2006 , 325, 91-100	4.2	50
99	Epac1 regulates integrity of endothelial cell junctions through VE-cadherin. FEBS Letters, 2005, 579, 490	6 6. 872	248
98	Junctional adhesion molecule-A deficiency increases hepatic ischemia-reperfusion injury despite reduction of neutrophil transendothelial migration. <i>Blood</i> , 2005 , 106, 725-33	2.2	86
97	VE-cadherin is not required for the formation of nascent blood vessels but acts to prevent their disassembly. <i>Blood</i> , 2005 , 105, 2771-6	2.2	130
96	A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. <i>Nature</i> , 2005 , 437, 426-31	50.4	1247
95	Downregulation of vascular endothelial-cadherin expression is associated with an increase in vascular tumor growth and hemorrhagic complications. <i>Thrombosis and Haemostasis</i> , 2005 , 93, 1041-6	7	27

94	Opposite effects of tumor necrosis factor and soluble fibronectin on junctional adhesion molecule-A in endothelial cells. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 2005 , 288, L1081-8	5.8	17
93	Expression of junctional adhesion molecule-A prevents spontaneous and random motility. <i>Journal of Cell Science</i> , 2005 , 118, 623-32	5.3	73
92	p120-Catenin regulates clathrin-dependent endocytosis of VE-cadherin. <i>Molecular Biology of the Cell</i> , 2005 , 16, 5141-51	3.5	210
91	Endoglin null endothelial cells proliferate faster and are more responsive to transforming growth factor beta1 with higher affinity receptors and an activated Alk1 pathway. <i>Journal of Biological Chemistry</i> , 2005 , 280, 27800-8	5.4	106
90	Histone deacetylase activity is essential for the expression of HoxA9 and for endothelial commitment of progenitor cells. <i>Journal of Experimental Medicine</i> , 2005 , 201, 1825-35	16.6	146
89	Junctional adhesion molecule-A-deficient polymorphonuclear cells show reduced diapedesis in peritonitis and heart ischemia-reperfusion injury. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 10634-9	11.5	98
88	Mesoangioblasts, vessel-associated multipotent stem cells, repair the infarcted heart by multiple cellular mechanisms: a comparison with bone marrow progenitors, fibroblasts, and endothelial cells. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2005 , 25, 692-7	9.4	78
87	Endothelial Cell Permeability Assays in Culture 2004 , 103-113		2
86	Contribution of JAM-1 to epithelial differentiation and tight-junction biogenesis in the mouse preimplantation embryo. <i>Journal of Cell Science</i> , 2004 , 117, 5599-608	5.3	90
85	Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. <i>Journal of Cell Biology</i> , 2004 , 166, 359-67	7-3	321
84	Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. <i>Physiological Reviews</i> , 2004 , 84, 869-901	47.9	920
83	Endothelial cell-cell junctions: happy together. <i>Nature Reviews Molecular Cell Biology</i> , 2004 , 5, 261-70	48.7	876
82	VE-cadherin expression and clustering maintain low levels of survivin in endothelial cells. <i>American Journal of Pathology</i> , 2004 , 165, 181-9	5.8	32
81	Gas1 is induced by VE-cadherin and vascular endothelial growth factor and inhibits endothelial cell apoptosis. <i>Blood</i> , 2004 , 103, 3005-12	2.2	63
80	Increased DC trafficking to lymph nodes and contact hypersensitivity in junctional adhesion molecule-A-deficient mice. <i>Journal of Clinical Investigation</i> , 2004 , 114, 729-38	15.9	130
79	Skeletal myogenic progenitors in the endothelium of lung and yolk sac. <i>Experimental Cell Research</i> , 2003 , 290, 207-16	4.2	16
78	Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. <i>Genes and Development</i> , 2003 , 17, 1835-40	12.6	477
77	The conditional inactivation of the beta-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility. <i>Journal of Cell Biology</i> , 2003 , 162, 1111-22	7:3	276

(2000-2003)

76	Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. <i>Journal of Cell Biology</i> , 2003 , 161, 793-804	7.3	340
75	Vascular endothelial growth factor induces SHC association with vascular endothelial cadherin: a potential feedback mechanism to control vascular endothelial growth factor receptor-2 signaling. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2002 , 22, 617-22	9.4	64
74	VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 9462-7	11.5	273
73	VE-cadherin regulates endothelial actin activating Rac and increasing membrane association of Tiam. <i>Molecular Biology of the Cell</i> , 2002 , 13, 1175-89	3.5	215
7 2	Keratinocyte junctions and the epidermal barrier: how to make a skin-tight dress. <i>Journal of Cell Biology</i> , 2002 , 156, 947-9	7-3	22
71	A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. <i>Blood</i> , 2002 , 100, 905-11	2.2	168
70	Selective targeting of angiogenic tumor vasculature by vascular endothelial-cadherin antibody inhibits tumor growth without affecting vascular permeability. <i>Cancer Research</i> , 2002 , 62, 2567-75	10.1	85
69	Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability. <i>Blood</i> , 2001 , 97, 1679-84	2.2	256
68	Dynamic modules and heterogeneity of function: a lesson from tyrosine kinase receptors in endothelial cells. <i>EMBO Reports</i> , 2001 , 2, 763-7	6.5	24
67	X-ray structure of junctional adhesion molecule: structural basis for homophilic adhesion via a novel dimerization motif. <i>EMBO Journal</i> , 2001 , 20, 4391-8	13	167
66	Pores in the Sieve and Channels in the Wall: Control of Paracellular Permeability by Junctional Proteins in Endothelial Cells. <i>Microcirculation</i> , 2001 , 8, 143-152	2.9	56
65	Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2001 , 98, 10733-8	11.5	315
64	Association of junctional adhesion molecule with calcium/calmodulin-dependent serine protein kinase (CASK/LIN-2) in human epithelial caco-2 cells. <i>Journal of Biological Chemistry</i> , 2001 , 276, 9291-6	5.4	98
63	Interendothelial Junctions and their Role in the Control of Angiogenesis, Vascular Permeability and Leukocyte Transmigration. <i>Thrombosis and Haemostasis</i> , 2001 , 86, 308-315	7	173
62	Pores in the Sieve and Channels in the Wall: Control of Paracellular Permeability by Junctional Proteins in Endothelial Cells 2001 , 8, 143		4
61	cDNA cloning, chromosomal mapping, and expression analysis of human VE-Cadherin-2. <i>Mammalian Genome</i> , 2000 , 11, 1030-3	3.2	12
60	Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. <i>Journal of Biological Chemistry</i> , 2000 , 275, 20520-6	5.4	332
59	Development of endothelial cell lines from embryonic stem cells: A tool for studying genetically manipulated endothelial cells in vitro. <i>Arteriosclerosis, Thrombosis, and Vascular Biology,</i> 2000 , 20, 1443-	-59t4	90

58	Homophilic interaction of junctional adhesion molecule. <i>Journal of Biological Chemistry</i> , 2000 , 275, 309	7 g. ф	113
57	Histamine induces tyrosine phosphorylation of endothelial cell-to-cell adherens junctions. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 1999 , 19, 2286-97	9.4	200
56	Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 9815-20	11.5	548
55	Regulation of cadherin function by Rho and Rac: modulation by junction maturation and cellular context. <i>Molecular Biology of the Cell</i> , 1999 , 10, 9-22	3.5	231
54	Leukocyte recruitment in the cerebrospinal fluid of mice with experimental meningitis is inhibited by an antibody to junctional adhesion molecule (JAM). <i>Journal of Experimental Medicine</i> , 1999 , 190, 135	1 ¹ 6.6	247
53	Endothelial adhesion molecules in the development of the vascular tree: the garden of forking paths. <i>Current Opinion in Cell Biology</i> , 1999 , 11, 573-81	9	60
52	Molecular structure and functional role of vascular tight junctions. <i>Trends in Cardiovascular Medicine</i> , 1999 , 9, 147-52	6.9	22
51	Adhesion Protein Protocols 1999 ,		1
50	Identification and characterisation of human Junctional Adhesion Molecule (JAM). <i>Molecular Immunology</i> , 1999 , 36, 1175-88	4.3	151
49	Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. <i>Cell</i> , 1999 , 98, 147-57	56.2	1067
48	Vascular endothelial (VE)-cadherin: only an intercellular glue?. Experimental Cell Research, 1999 , 252, 13-9	4.2	197
47	Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. <i>Journal of Cell Biology</i> , 1998 , 142, 117-27	7.3	1113
46	Differential localization of VE- and N-cadherins in human endothelial cells: VE-cadherin competes with N-cadherin for junctional localization. <i>Journal of Cell Biology</i> , 1998 , 140, 1475-84	7-3	259
45	In vitro degradation of endothelial catenins by a neutrophil protease. <i>Journal of Cell Biology</i> , 1998 , 140, 403-7	7:3	87
44	Identification of a novel cadherin (vascular endothelial cadherin-2) located at intercellular junctions in endothelial cells. <i>Journal of Biological Chemistry</i> , 1998 , 273, 17565-72	5.4	54
43	Endothelium 1998 , 802-806		O
42	Cytokine Regulation of Endothelial Cell Function 1998 , 105-134		2
41	Adhesive Molecules at Luminal Surface and at Intercellular Junctions of the Endothelium in the Regulation of Leukocyte Transendothelial Traffic 1998 , 47-55		

40 Structure and Functional Role of Endothelial Cell-to-Cell Junctions **1998**, 187-201

39	Alteration of interendothelial adherens junctions following tumor cell-endothelial cell interaction in vitro. <i>Experimental Cell Research</i> , 1997 , 237, 347-56	4.2	49
38	Interendothelial junctions: structure, signalling and functional roles. <i>Current Opinion in Cell Biology</i> , 1997 , 9, 674-82	9	194
37	Triggering of beta 1-integrin chain induces platelet adhesion to cultured endothelium. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 1997 , 17, 2663-71	9.4	
36	Heterogeneity of endothelial cells. Specific markers. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 1997 , 17, 1193-202	9.4	402
35	Intercellular junctions in the endothelium and the control of vascular permeability. <i>Annals of the New York Academy of Sciences</i> , 1997 , 811, 36-43; discussion 43-4	6.5	20
34	Genomic structure and chromosomal mapping of the mouse VE-cadherin gene (Cdh5). <i>Genomics</i> , 1996 , 32, 21-8	4.3	42
33	Thrombin-induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 1996 , 16, 488-96	9.4	255
32	Expression of VE (vascular endothelial)-cadherin and other endothelial-specific markers in haemangiomas. <i>Journal of Pathology</i> , 1995 , 175, 51-7	9.4	55
31	Endothelial cell-to-cell junctions. <i>FASEB Journal</i> , 1995 , 9, 910-918	0.9	37 ¹
30	Catenin-dependent and -independent functions of vascular endothelial cadherin. <i>Journal of Biological Chemistry</i> , 1995 , 270, 30965-72	5.4	180
29	Structural Characteristics and Functional Role of Endothelial Cell to Cell Junctions. <i>Endothelium:</i> Journal of Endothelial Cell Research, 1994 , 2, 1-10		14
28	Co-expression of endothelial cell and macrophage antigens in KaposiS sarcoma cells. <i>Journal of Pathology</i> , 1994 , 173, 23-31	9.4	70
27	Inhibition of human monocyte adhesion to endothelial cells by the coumarin derivative, cloricromene. <i>British Journal of Pharmacology</i> , 1994 , 111, 575-81	8.6	6
26	Interleukin-1 and Tumor Necrosis Factor Induce Transient Expression of an Inhibitor of Nuclear Factor kB in Endothelial Cells. <i>Endothelium: Journal of Endothelial Cell Research</i> , 1993 , 1, 161-165		6
25	Endothelial integrins and their role in maintaining the integrity of the vessel wall. <i>Kidney International</i> , 1993 , 43, 61-5	9.9	21
24	Endothelial cell-to-cell junctions. Structural characteristics and functional role in the regulation of vascular permeability and leukocyte extravasation. <i>Best Practice and Research: Clinical Haematology</i> , 1993 , 6, 539-58		35
23	Cytokine regulation of endothelial cell function. <i>FASEB Journal</i> , 1992 , 6, 2591-9	0.9	574

22	Cloricromene inhibits the activation of human platelets by ADP alone or in combination with adrenaline. <i>European Journal of Pharmacology</i> , 1990 , 187, 541-5	5.3	8
21	The Role of Cytokines in the Symbiotic Relationship between Leukocytes and Vascular Endothelia 1989 , 121-127		
20	Modulation of endothelial function by interleukin-1. A novel target for pharmacological intervention?. <i>Biochemical Pharmacology</i> , 1987 , 36, 301-5	6	30
19	Pharmacokinetics of enteric-coated aspirin and inhibition of platelet thromboxane A2 and vascular prostacyclin generation in humans. <i>Clinical Pharmacology and Therapeutics</i> , 1987 , 42, 175-80	6.1	10
18	Effects of dipyridamole and low-dose aspirin therapy on platelet adhesion to vascular subendothelium. <i>American Journal of Cardiology</i> , 1986 , 58, 1261-4	3	18
17	Current issues in thrombosis prevention with antiplatelet drugs. <i>Drugs</i> , 1986 , 31, 517-49	12.1	28
16	Differential salicylate-aspirin interaction on vascular prostacyclin and platelet thromboxane synthesis in patients undergoing saphenectomy. <i>Experimental Biology and Medicine</i> , 1985 , 180, 533-7	3.7	5
15	Inhibition of human platelet thromboxane generation by aspirin in the absence of measurable drug levels in peripheral blood. <i>Biochemical Pharmacology</i> , 1985 , 34, 1839-41	6	19
14	Platelet Adhesion to Subendothelium - Effect of Shear Rate, Hematocrit and Platelet Count on the Dynamic Equilibrium Between Platelets Adhering to and Detaching from the Surface. <i>Thrombosis and Haemostasis</i> , 1985 , 54, 857-861	7	15
13	Specific binding of human fibrinogen to cultured human fibroblasts. Evidence for the involvement of the E domain. <i>FEBS Journal</i> , 1984 , 139, 657-62		33
12	Maternal smoking and prostacyclin production by cultured endothelial cells from umbilical arteries. <i>American Journal of Obstetrics and Gynecology</i> , 1984 , 148, 1127-30	6.4	28
11	Recovery of prostacyclin production by cultured bovine smooth muscle cells after aspirin inhibition: effect of serum replacement and concentration in culture medium. <i>Biochemical Pharmacology</i> , 1983 , 32, 710-3	6	10
10	Success rate of primary human endothelial cell culture from umbilical cords is influenced by maternal and fetal factors and interval from delivery. <i>In Vitro</i> , 1983 , 19, 807-10		10
9	Reduced prostacyclin production by cultured endothelial cells from umbilical arteries of babies born to women who smoke. <i>Lancet, The</i> , 1982 , 2, 609-10	40	15
8	Evidence that vascular endothelial cells can induce the retraction of fibrin clots. <i>Experimental Biology and Medicine</i> , 1981 , 168, 204-7	3.7	42
7	Impaired thromboxane production by newly formed platelets after aspirin administration to thrombocytopenic rats. <i>British Journal of Haematology</i> , 1980 , 46, 465-9	4.5	20
6	Differences in inhibition of PGI2 production by aspirin in rabbit artery and vein segments. <i>Thrombosis Research</i> , 1980 , 20, 447-60	8.2	44
5	Bleeding time in laboratory animals. II - A comparison of different assay conditions in rats. <i>Thrombosis Research</i> , 1979 , 15, 191-7	8.2	161

LIST OF PUBLICATIONS

4	Bleeding time in laboratory animals. III - Do tail bleeding times in rats only measure a platelet defect? (the aspirin puzzle). <i>Thrombosis Research</i> , 1979 , 15, 199-207	8.2	32
3	Prostaglandins I2 and E1 reduce rabbit and human platelet adherence without inhibiting serotonin release from adherent platelets. <i>Thrombosis Research</i> , 1979 , 15, 273-9	8.2	39
2	Role of the lung in the development of cardiovascular modifications during ADP infusion in the rat. <i>Thrombosis Research</i> , 1978 , 12, 47-57	8.2	1
1	Contribution of Platelets to the Cardiovascular Effects of ADP in the Rat. <i>Thrombosis and Haemostasis</i> , 1978 , 39, 135-145	7	7