
WÅ,odzimierz Sady

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2397051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of biofortification with iodine and selenium of lettuce cultivated in the NFT hydroponic system. Scientia Horticulturae, 2014, 166, 9-16.	3.6	118
2	The effect of various nitrogen fertilization and foliar nutrition regimes on the concentrations of sugars, carotenoids and phenolic compounds in carrot (Daucus carota L.). Scientia Horticulturae, 2009, 120, 315-324.	3.6	61
3	lodine biofortification with additional application of salicylic acid affects yield and selected parameters of chemical composition of tomato fruits (Solanum lycopersicum L.). Scientia Horticulturae, 2015, 188, 89-96.	3.6	56
4	Influence of iodine form and application method on the effectiveness of iodine biofortification, nitrogen metabolism as well as the content of mineral nutrients and heavy metals in spinach plants (Spinacia oleracea L.). Scientia Horticulturae, 2012, 143, 176-183.	3.6	48
5	lodine and Selenium Biofortification with Additional Application of Salicylic Acid Affects Yield, Selected Molecular Parameters and Chemical Composition of Lettuce Plants (Lactuca sativa L. var.) Tj ETQq1 1 ().7846814	rgB47/Overloc
6	The role of exogenous humic and fulvic acids in iodine biofortification in spinach (Spinacia oleracea) Tj ETQq0 0	0 rgBT /O	verlggk 10 Tf 5
7	Combined biofortification of carrot with iodine and selenium. Food Chemistry, 2019, 300, 125202.	8.2	38
8	Quality of fresh and stored carrots depending on iodine and nitrogen fertilization. Food Chemistry, 2014, 159, 316-322.	8.2	27
9	The effect of salicylic acid on biofortification with iodine and selenium and the quality of potato cultivated in the NFT system. Scientia Horticulturae, 2018, 240, 530-543.	3.6	26
10	Biofortification of Six Varieties of Lettuce (Lactuca sativa L.) With Iodine and Selenium in Combination With the Application of Salicylic Acid. Frontiers in Plant Science, 2019, 10, 143.	3.6	25
11	Comparison of Effects of Potassium Iodide and Iodosalicylates on the Antioxidant Potential and Iodine Accumulation in Young Tomato Plants. Journal of Plant Growth Regulation, 2020, 39, 282-295.	5.1	19
12	The absorption of iodine from 5-iodosalicylic acid by hydroponically grown lettuce. Scientia Horticulturae, 2017, 225, 716-725.	3.6	17
13	The effect of various nitrogen fertilization and foliar nutrition regimes on the concentrations of nitrates, ammonium ions, dry matter and N-total in carrot (Daucus carota L.) roots. Scientia Horticulturae, 2009, 119, 219-231.	3.6	16
14	Organic iodine supply affects tomato plants differently than inorganic iodine. Physiologia Plantarum, 2018, 164, 290-306.	5.2	16
15	lodine Biofortification of Potato (Solanum tuberosum L.) Grown in Field. Agronomy, 2020, 10, 1916.	3.0	13
16	Preliminary evaluation of the influence of iodine and nitrogen fertilization on the effectiveness of iodine biofortification and mineral composition of carrot storage roots. Journal of Elementology, 2011, , .	0.2	11
17	The Iodine Content in Urine, Faeces and Selected Organs of Rats Fed Lettuce Biofortified with Iodine Through Foliar Application. Biological Trace Element Research, 2016, 174, 347-355.	3.5	11
18	lodine biofortification of spinach by soil fertigation with additional application of humic and fulvic	1.3	9

acids. New Zealand Journal of Crop and Horticultural Science, 2017, 45, 233-250.

WÅ, odzimierz Sady

#	Article	IF	CITATIONS
19	Changes in the Chemical Composition of Six Lettuce Cultivars (Lactuca sativa L.) in Response to Biofortification with Iodine and Selenium Combined with Salicylic Acid Application. Agronomy, 2019, 9, 660.	3.0	7
20	lodosalicylates and iodobenzoates supplied to tomato plants affect the antioxidative and sugar metabolism differently than potassium iodide. Folia Horticulturae, 2019, 31, 385-400.	1.8	7
21	EFFECT OF FOLIAR APPLICATION OF UREA, MOLYBDENUM, BENZYLADENINE, SUCROSE AND SALICYLIC ACID ON YIELD, NITROGEN METABOLISM OF RADISH PLANTS AND QUALITY OF EDIBLE ROOTS. Journal of Plant Nutrition, 2012, 35, 1113-1129.	1.9	6
22	The effect of nitrogen fertilizer form and foliar application on the concentrations of twenty-five elements in carrot. Folia Horticulturae, 2009, 21, 3-16.	1.8	6
23	The influence of nitrogen fertilization with ENTEC-26 and ammonium nitrate on the concentration of thirty-one elements in carrot (Daucus carota L.) storage roots. Journal of Elementology, 2012, , .	0.2	6
24	The quality of carrot (Daucus carota L.) cultivated in the field depending on iodine and selenium fertilization. Folia Horticulturae, 2016, 28, 151-164.	1.8	5
25	The Effect of Foliar Nutrition with Nitrogen, Molybdenum, Sucrose and Benzyladenine on the Contents of Dry Weight, Cd, Cu and Zn in Carrot. Vegetable Crops Research Bulletin, 2008, 68, 135-144.	0.2	4
26	The Effect of Foliar Nutrition with Nitrogen, Molybdenum, Sucrose and Benzyladenine on the Nitrogen Metabolism in Carrot Plants. Journal of Fruit and Ornamental Plant Research, 2010, 72, 83-92.	0.4	3
27	The Effect of Foliar Nutrition with Urea, Molybdenum, Sucrose and Benzyladenine on Yield and Some Organic Compounds of Carrot Storage Roots. Vegetable Crops Research Bulletin, 2010, 72, 93-105.	0.2	3
28	Biological Value of Red Beets in Relation to Nitrogen Fertilization. Journal of Fruit and Ornamental Plant Research, 2008, 68, 145-153.	0.4	3
29	Effect of Nitrogen Form and Type of Polyethylene Film Covering Tunnel on Nutrient Content of Hydroponically Grown Sweet Pepper. Journal of Fruit and Ornamental Plant Research, 2009, 71, 69-78.	0.4	1
30	The Effect of Various Nitrogen Fertilization Regimes on the Concentration of Thirty Three Elements in Carrot (Daucus Carota L.) Storage Roots. Journal of Fruit and Ornamental Plant Research, 2011, 74, 61-76.	0.4	0