
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2396978/publications.pdf Version: 2024-02-01

AIBERTO PASSERONE

#	Article	IF	CITATIONS
1	Zirconia-high entropy alloys joints for biomedical applications: The role of Ag-based fillers on interfacial reactivity. Journal of Alloys and Compounds, 2022, 909, 164764.	5.5	7
2	Wetting and interfacial reactivity of Ni–Al alloys with Al2O3 and ZrO2 ceramics. Journal of Materials Science, 2021, 56, 7849-7861.	3.7	6
3	Assessment of advanced joint Hfb2/Nib/Hfb2 by nanoindentation. AIP Conference Proceedings, 2021, , .	0.4	2
4	Wetting and interfacial phenomena in Ni-Cr-Hf/sapphire systems. Journal of the European Ceramic Society, 2020, 40, 521-528.	5.7	4
5	High-temperature-reactivity of Al–Ti alloys in contact with SiC. Journal of Alloys and Compounds, 2020, 817, 152715.	5.5	11
6	Wetting and interfacial behavior of Sn–Ti alloys on zirconia. Journal of Materials Science, 2019, 54, 812-822.	3.7	24
7	Interactions, joining and microstructure of Sn-Ti/ZrO2 system. Journal of the European Ceramic Society, 2019, 39, 1525-1531.	5.7	29
8	Wetting and spreading behavior of Sn–Ti alloys on SiC. Materialia, 2018, 3, 57-63.	2.7	13
9	High Temperature Solid-Liquid Interactions in Metal-Ceramic Brazing: A Critical Review. Materials Science Forum, 2017, 884, 132-165.	0.3	7
10	Surface engineering of SiC _f /SiC composites by selective thermal removal. International Journal of Applied Ceramic Technology, 2017, 14, 287-294.	2.1	7
11	Wetting and interfacial phenomena of Niâ€Ta alloys on <scp>CVD</scp> ‣iC. International Journal of Applied Ceramic Technology, 2017, 14, 295-304.	2.1	7
12	Wettability of SiC and graphite by Co–Ta alloys: evaluation of the reactivity supported by thermodynamic calculations. Journal of Materials Science, 2017, 52, 13414-13426.	3.7	10
13	Angle of wetting of aluminum oxide with a high-carbon iron melt. Russian Metallurgy (Metally), 2017, 2017, 477-482.	0.5	1
14	Brazing transparent YAG to Ti6Al4V: reactivity and characterization. Journal of the European Ceramic Society, 2016, 36, 4185-4196.	5.7	24
15	Critical Issues for Producing UHTC-Brazed Joints: Wetting and Reactivity. Journal of Materials Engineering and Performance, 2016, 25, 3330-3347.	2.5	10
16	Wettability of transparent YAG (Y3Al5O12) by molten Ag–Cu–Ti alloys. Journal of the European Ceramic Society, 2015, 35, 2895-2906.	5.7	27
17	Wetting and interfacial behavior of molten Cu on Co–Si(–Mo) coated SiC. Ceramics International, 2015, 41, 13493-13501.	4.8	18
18	Surface characterization of Mo-implanted 6H–SiC by high temperature non-reactive wetting tests with the Ni–56Si alloy. Ceramics International, 2014, 40, 7227-7234.	4.8	15

#	Article	IF	CITATIONS
19	Joining of ZrB2 Ceramics to Ti6Al4V by Ni-Based Interlayers. Journal of Materials Engineering and Performance, 2014, 23, 1555-1560.	2.5	21
20	Experimental investigations and thermodynamic modeling in the ZrB2Ni section of the BNiZr system. Journal of Alloys and Compounds, 2014, 592, 115-120.	5.5	11
21	Isothermal solid–liquid transitions in the (Ni,B)/ZrB2 system as revealed by sessile drop experiments. Journal of Materials Science, 2013, 48, 5029-5035.	3.7	15
22	Wetting and interfacial phenomena in relation to joining of alumina via Co/Nb/Co interlayers. Journal of the European Ceramic Society, 2013, 33, 539-547.	5.7	20
23	A review of transition metals diborides: from wettability studies to joining. Journal of Materials Science, 2012, 47, 8275-8289.	3.7	30
24	ZrB2–SiC/Ti6Al4V joints: wettability studies using Ag- and Cu-based braze alloys. Journal of Materials Science, 2012, 47, 8439-8449.	3.7	31
25	Control of Interfacial Reactivity Between ZrB2 and Ni-Based Brazing Alloys. Journal of Materials Engineering and Performance, 2012, 21, 660-666.	2.5	25
26	Diamond–metal interfaces in cutting tools: a review. Journal of Materials Science, 2012, 47, 3252-3264.	3.7	167
27	Twenty Years of Surface Tension Measurements in Space. Microgravity Science and Technology, 2011, 23, 101-111.	1.4	11
28	Survey on wetting of SiC by molten metals. Ceramics International, 2010, 36, 1177-1188.	4.8	161
29	Wetting and interactions of Ni- and Co-based superalloys with different ceramic materials. Journal of Materials Science, 2010, 45, 2071-2079.	3.7	67
30	Guest Editors' Editorial: HTC-2009. Journal of Materials Science, 2010, 45, 1977-1978.	3.7	1
31	SiC/SiC and SiC/Kovar joining by Ni–Si and Mo interlayers. Journal of Materials Science, 2010, 45, 4299-4307.	3.7	47
32	Ab initio simulations of the Ag(111)/Al2O3 interface at intermediate oxygen partial pressures. Journal of Materials Science, 2010, 45, 4265-4270.	3.7	14
33	Preface to the special issue "high-temperature joining― Journal of Materials Science, 2010, 45, 4255-4255.	3.7	0
34	Overview on Wetting and Joining in Transition Metals Diborides. Advances in Science and Technology, 2010, 64, 98-107.	0.2	16
35	Interactions between Superalloys and Mould Materials for Investment Casting of Turbine Blades. Advances in Science and Technology, 2010, 70, 130-135.	0.2	3
36	Wettability of HfB2 by molten Ni(B) alloys interpreted by CALPHAD methods, Part 1: Definition of the B–Hf–Ni system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2010, 34, 2-5.	1.6	14

#	Article	IF	CITATIONS
37	Wettability of by molten Ni(B) alloys interpreted by CALPHAD methods, Part 2: Wetting and interfacial reactivity. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2010, 34, 6-14.	1.6	21
38	Wetting and interfacial behavior of Ni–Si alloy on different substrates. Journal of Materials Science, 2009, 44, 5990-5997.	3.7	32
39	Thermodynamics and surface properties of liquid Cu–B alloys. Surface Science, 2009, 603, 2725-2733.	1.9	10
40	Wetting and interfacial phenomena in Ni–HfB2 systems. Acta Materialia, 2009, 57, 356-364.	7.9	47
41	Oxygen influence on ceramics wettability by liquid metals: Ag/α-Al2O3—Experiments and modelling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 495, 153-158.	5.6	36
42	Liquid metal/ceramic interactions in the (Cu, Ag, Au)/ZrB2 systems. Journal of the European Ceramic Society, 2007, 27, 3277-3285.	5.7	56
43	Wetting of Group IV diborides by liquid metals. Journal of Materials Science, 2006, 41, 5088-5098.	3.7	45
44	Surface tension measurements of Al-Ni based alloys from ground-based and parabolic flight experiments: Results from the thermolab project. Microgravity Science and Technology, 2006, 18, 73-76.	1.4	8
45	Facility for adsorption and surface tension studies (FAST) on board of shuttle STS-107 mission: Determination of the surface dilational modulus as a function of concentration and temperature for aqueous solutions of dodecyl-dimethyl-phosphine-oxide, in the 0.01–0.32 Hz frequency range. Microgravity Science and Technology, 2006, 18, 100-103.	1.4	1
46	Results of microgravity investigation on adsorption and interfacial rheology of soluble surfactants from the experiment FAST onboard STS-107. Microgravity Science and Technology, 2006, 18, 112-116.	1.4	6
47	Surface Properties of Ag-Cu-Zr Liquid Alloys in Relation to the Wettability of Boride Ceramics. Materials Science Forum, 2006, 512, 211-216.	0.3	3
48	Bulk and surface properties of liquid Ag–X (X=Ti, Hf) compound forming alloys. Surface Science, 2005, 591, 56-69.	1.9	30
49	Oxygen tensioactivity on liquid-metal drops. Advances in Colloid and Interface Science, 2005, 117, 15-32.	14.7	64
50	Surface and transport properties of Ag–Cu liquid alloys. Surface Science, 2005, 576, 175-187.	1.9	73
51	Measurement of thermophysical properties of liquid metallic alloys in a ground- and microgravity based research programme — theThermoLab project. Microgravity Science and Technology, 2005, 16, 7-10.	1.4	7
52	Surface tension and viscosity of industrial alloys from parabolic flight experiments — Results of theThermoLab project. Microgravity Science and Technology, 2005, 16, 11-14.	1.4	24
53	Results of the Facility for Adsorption and Surface Tension (FAST) experiments onboard STS-107, in the framework of the project FASES. Microgravity Science and Technology, 2005, 16, 196-200.	1.4	6
54	Adsorption properties of C10E8 at water/ hexane interface investigated onboard STS-107, by the FAST facility. Microgravity Science and Technology, 2005, 16, 201-204.	1.4	6

#	Article	IF	CITATIONS
55	Measurement of contact angle and work of adhesion at high temperature. Journal of Materials Science, 2005, 40, 2271-2280.	3.7	162
56	Wetting and spreading of liquid metals on ZrB2-based ceramics. Journal of Materials Science, 2005, 40, 2295-2300.	3.7	37
57	Thermophysical Properties of IN738LC, MM247LC and CMSX-4 in the Liquid and High Temperature Solid Phase. , 2005, , .		11
58	Metal-ceramic interfaces: wetting and joining processes. International Journal of Materials and Product Technology, 2004, 20, 420.	0.2	11
59	Wetting, spreading and joining in the alumina–zirconia–Inconel 738 system. Scripta Materialia, 2004, 50, 325-330.	5.2	59
60	Bulk and surface properties of liquid X–Zr (X=Ag, Cu) compound forming alloys. Surface Science, 2004, 549, 281-293.	1.9	42
61	Corrosion behaviour of steels in lead–bismuth at 823 K. Journal of Nuclear Materials, 2004, 335, 185-188.	2.7	45
62	Wettability of zirconium diboride ceramics by Ag, Cu and their alloys with Zr. Scripta Materialia, 2003, 48, 191-196.	5.2	82
63	On the application of modelling to study the surface and interfacial phenomena in liquid alloy–ceramic substrate systems. Intermetallics, 2003, 11, 1301-1311.	3.9	38
64	Secondary ion mass spectrometry in the characterisation of boron-based ceramics. Rapid Communications in Mass Spectrometry, 2001, 15, 1-7.	1.5	17
65	A theoretical approach for the interpretation of liquid metal surface tension measurements in the presence of oxygen. ISIJ International, 2000, 40, S139-S143.	1.4	14
66	Joining Technology in Metal-Ceramic Systems. Materials and Manufacturing Processes, 2000, 15, 631-648.	4.7	21
67	Arguments in favour of the space station. Nature, 1998, 392, 432-432.	27.8	0
68	High temperature tensiometry. Studies in Interface Science, 1998, 6, 475-524.	0.0	15
69	Wettability of TiB2 Ceramics by Liquid Cu and Ag-Cu Eutectic Alloys. , 1998, , 87-94.		8
70	Oxygen transport and dynamic surface tension of liquid metals. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1998, 356, 857-870.	3.4	19
71	Measurement of the Partition Coefficient of Surfactants in Water/Oil Systems. Langmuir, 1997, 13, 4817-4820.	3.5	72
72	Adsorption Kinetics of Alkylphosphine Oxides at Water/Hexane Interface. Journal of Colloid and Interface Science, 1997, 186, 46-52.	9.4	79

#	Article	IF	CITATIONS
73	The capillary pressure method: A new tool for interfacial tension measurements. , 1996, , 175-185.		5
74	A diffusion-based approach to mixed adsorption kinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 114, 351-359.	4.7	120
75	Dynamic Interfacial Tension Measurements by a Capillary Pressure Method. Journal of Colloid and Interface Science, 1995, 169, 226-237.	9.4	66
76	Equilibrium Interfacial Tension of Hexane/Water plus Triton X-100. Journal of Colloid and Interface Science, 1995, 169, 238-240.	9.4	38
77	An auger investigation of oxygen-enhanced tin segregation on a liquid Pbâ^'Sn alloy. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 365-380.	0.4	1
78	Liquid metal surface tension measurements: a kinetic-fluodynamic model of surface oxygen availability. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 178, 99-104.	5.6	9
79	Surface reactivity of liquid metal with oxygen and its relationship with surface tension measurements: a kinetic-fluodynamic model. Journal of Materials Science, 1994, 29, 1833-1846.	3.7	26
80	Oxygen mass transfer at liquid-metal-vapour interfaces under a low total pressure. Journal of Materials Science, 1994, 29, 6104-6114.	3.7	28
81	Sorption Kinetics at Liquid-Liquid Interfaces with the Surface-Active Component Soluble in Both Phases. Journal of Colloid and Interface Science, 1994, 163, 309-314.	9.4	32
82	Review: Surface tension and its relations with adsorption, vapourization and surface reactivity of liquid metals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 161, 31-40.	5.6	34
83	M.I.T.E. maser-4 results: Interfacial tension measurement in microgravity and drop growth instabilities. Advances in Space Research, 1991, 11, 59-68.	2.6	5
84	A new experimental method for the measurement of the interfacial tension between immiscible fluids at zero bond number. Journal of Colloid and Interface Science, 1991, 146, 152-162.	9.4	66
85	Thermodynamic approach to competition between surface and volume reactions. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1990, 12, 353-376.	0.4	10
86	Influence of oxygen contamination on the surface tension of liquid tin. Journal of Materials Science, 1990, 25, 4266-4272.	3.7	45
87	Drop formation instabilities induced by entrapped gas bubbles. Journal of Colloid and Interface Science, 1990, 140, 436-443.	9.4	25
88	Capillary properties and chemical reactivity: A thermodynamic study. Surface Science, 1989, 219, L521-L526.	1.9	0
89	An automatic technique for measuring the surface tension of liquid metals. High Temperature Technology, 1989, 7, 82-86.	0.3	102
90	A non linear regression analysis of adsorption isotherms of oxygen on liquid metals. Scripta Metallurgica, 1988, 22, 1835-1840.	1.2	1

#	Article	IF	CITATIONS
91	Thermodynamic study of adsorption in liquid metal-oxygen systems. Surface Science, 1988, 206, 533-553.	1.9	44
92	General relationships between dihedral angles in systems with an intermetallic compound. Scripta Metallurgica, 1987, 21, 937-942.	1.2	2
93	Grain boundary penetration of liquid sulphides in nickel, cobalt, and iron. Materials Science and Technology, 1986, 2, 42-46.	1.6	Ο
94	An improved regression analysis for automatic surface tension measurements. Mathematics and Computers in Simulation, 1986, 28, 331-335.	4.4	0
95	Density and surface tension of dioctylphthalate, silicone oil and their solutions. Surface and Coatings Technology, 1986, 28, 215-223.	4.8	27
96	Interfacial phenomena in metal-ceramic systems. Materials Chemistry and Physics, 1986, 15, 263-279.	4.0	6
97	Solid-liquid interfacial tensions by the dihedral angle method. A mathematical approach. Acta Metallurgica, 1985, 33, 771-776.	2.1	39
98	On the measurement of the surface tension of DNA solutions. Journal of Colloid and Interface Science, 1984, 102, 295-297.	9.4	9
99	On the calculation of solid-liquid interfacial tension in metallic systems from contact angle data. Journal of Materials Science Letters, 1983, 2, 197-200.	0.5	2
100	Growth of interfacial phases in liquid silver-silica systems. Ultramicroscopy, 1983, 12, 119-120.	1.9	1
101	The surface tension of liquid lead. Journal of Chemical Thermodynamics, 1983, 15, 971-983.	2.0	35
102	Interfacial tensions and adsorption in the Agî—,Pb system. Scripta Metallurgica, 1982, 16, 547-550.	1.2	29
103	Surface tension and adsorption in liquid silver-oxygen alloys. Acta Metallurgica, 1982, 30, 1597-1604.	2.1	57
104	Equilibrium structural transitions of solid-liquid interfaces in zinc based alloys. Acta Metallurgica, 1982, 30, 1349-1356.	2.1	43
105	Factors limiting the accuracy of measurements of surface tension by the sessile drop method. Journal of Materials Science, 1982, 17, 2895-2901.	3.7	32
106	Wettability of glass substrates by molten nylon-6. Polymer, 1981, 22, 534-538.	3.8	4
107	Experimental study of the solid-liquid equilibrium roughening transition in Zn-In alloys. Journal of Crystal Growth, 1980, 49, 757-760.	1.5	15
108	Isothermal faceted to non-faceted equilibrium transition of solid-liquid interfaces in Znî—,Biî—,In alloys. Scripta Metallurgica, 1980, 14, 1089-1092.	1.2	15

#	Article	IF	CITATIONS
109	Surface tension and density of molten glasses in the system La2O3î—,Na2Si2O5. Ceramurgia International, 1979, 5, 18-22.	0.3	12
110	Microstructure and interfacial tensions in Zn-In and Zn-Bi alloys. Metal Science, 1979, 13, 359-365.	0.7	20
111	Adsorption of alkylamines on iron. Energetics of adsorption by the contact angle method. The Journal of Physical Chemistry, 1977, 81, 1851-1854.	2.9	0
112	Interfacial tensions in Zn, Zn-Sn and Zn-Sn-Pb systems. Journal of the Less Common Metals, 1977, 52, 37-49.	0.8	48
113	Equilibrium atomic roughness at solid-liquid interfaces of pure metals. Materials Chemistry, 1976, 1, 45-58.	0.3	7
114	Wetting of barium hexaferrite by molten metals. Ceramurgia International, 1975, 1, 23-27.	0.3	3
115	Dip-coating of aluminium by lead. Journal of Materials Science, 1974, 9, 1050-1056.	3.7	2