Emmanuel A Lalla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2396774/publications.pdf

Version: 2024-02-01

687363 477307 34 849 13 29 citations h-index g-index papers 36 36 36 828 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass. Sensors and Actuators B: Chemical, 2011, 158, 208-213.	7.8	245
2	Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors. Sensors and Actuators B: Chemical, 2013, 176, 1167-1175.	7.8	137
3	Optical characterization, 1.51¼m emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses. Journal of Luminescence, 2011, 131, 1239-1248.	3.1	66
4	Nd3+-doped TeO2–PbF2–AlF3 glasses for laser applications. Optical Materials, 2016, 51, 35-41.	3.6	53
5	Judd-Ofelt parameters of RE3+-doped fluorotellurite glass (RE3+= Pr3+, Nd3+, Sm3+, Tb3+, Dy3+, Ho3+,) Tj ETQq1	1 1 0.7843 5.5	314 rgBT /
6	Optical temperature sensor based on the Nd3+ infrared thermalized emissions in a fluorotellurite glass. Journal of Luminescence, 2015, 166, 209-214.	3.1	38
7	ExoMars Raman Laser Spectrometer (RLS): development of chemometric tools to classify ultramafic igneous rocks on Mars. Scientific Reports, 2020, 10, 16954.	3.3	22
8	Optical temperature sensor based on Sm3+ emissions in a fluorotellurite glass. Optical Fiber Technology, 2019, 47, 178-186.	2.7	20
9	Raman Laser Spectrometer (RLS) calibration target design to allow onboard combined science between the RLS and MicrOmega instruments on the ExoMars rover. Journal of Raman Spectroscopy, 2020, 51, 1718-1730.	2.5	19
10	Raman–Mössbauer–XRD studies of selected samples from "Los Azulejos―outcrop: A possible analogue for assessing the alteration processes on Mars. Advances in Space Research, 2016, 57, 2385-2395.	2.6	18
11	Biosignature detection by Mars rover equivalent instruments in samples from the CanMars Mars Sample Return Analogue Deployment. Planetary and Space Science, 2019, 176, 104683.	1.7	17
12	Raman-IR vibrational and XRD characterization of ancient and modern mineralogy from volcanic eruption in Tenerife Island: Implication for Mars. Geoscience Frontiers, 2016, 7, 673-681.	8.4	16
13	ExoMars Raman Laser Spectrometer: A Tool to Semiquantify the Serpentinization Degree of Olivine-Rich Rocks on Mars. Astrobiology, 2021, 21, 307-322.	3.0	13
14	Spectroscopic study of terrestrial analogues to support rover missions to Mars – A Raman-centred review. Analytica Chimica Acta, 2022, 1209, 339003.	5.4	12
15	Raman-IR Spectroscopic Structural Analysis of Rare-Earth (RE3+) Doped Fluorotellurite Glasses at different laser wavelengths. Vibrational Spectroscopy, 2020, 106, 103020.	2.2	11
16	The AMADEE-18 Mars Analog Expedition in the Dhofar Region of Oman. Astrobiology, 2020, 20, 1276-1286.	3.0	11
17	On the application of a novel linear mixture model on laserâ€induced breakdown spectroscopy: Implications for Mars. Journal of Chemometrics, 2019, 33, e3174.	1.3	10
18	Laboratory Analysis of Returned Samples from the AMADEE-18 Mars Analog Mission. Astrobiology, 2020, 20, 1303-1320.	3.0	10

#	Article	IF	CITATIONS
19	Combined vibrational, structural, elemental and Mössbauer spectroscopic analysis of natural phillipsite (zeolite) from historical eruptions in Tenerife, Canary Islands: Implication for Mars. Vibrational Spectroscopy, 2019, 101, 10-19.	2.2	8
20	Structural and vibrational analyses of CePO4 synthetic monazite samples under an optimized precipitation process. Journal of Molecular Structure, 2021, 1223, 129150.	3.6	8
21	Combined Spectroscopic Analysis of Terrestrial Analogs from a Simulated Astronaut Mission Using the Laser-Induced Breakdown Spectroscopy (LIBS) Raman Sensor: Implications for Mars. Applied Spectroscopy, 2021, 75, 1093-1113.	2.2	8
22	The Raman laser spectrometer ExoMars simulator (RLS Sim): A heavyâ€duty Raman tool for ground testing on ExoMars. Journal of Raman Spectroscopy, 2022, 53, 382-395.	2.5	8
23	A micro-Raman and X-ray study of erupted submarine pyroclasts from El Hierro (Spain) and its' astrobiological implications. Life Sciences in Space Research, 2019, 21, 49-64.	2.3	7
24	Elemental estimation of terrestrial analogues from the CanMars rover field campaign using LiRS: Implications for detecting silica-rich deposits on Mars. Icarus, 2021, 358, 114113.	2.5	7
25	Analytical database of Martian minerals (ADaMM): Project synopsis and Raman data overview. Journal of Raman Spectroscopy, 2022, 53, 364-381.	2.5	7
26	Synthesis, luminescence, and electrical properties of Na6Mg(SO4)4:xEu vanthoffite ceramics as electrode materials for sodium ion batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 247, 114384.	3.5	6
27	Polarized Raman analyzes of (RE3+) doped fluorotellurite glass and ceramics. Vibrational Spectroscopy, 2019, 103, 102934.	2.2	6
28	UV laserâ€induced fluorescence spectroscopy as a nonâ€destructive technique for mineral and organic detection in carbonaceous chondrites. Meteoritics and Planetary Science, 2020, 55, 2287-2300.	1.6	6
29	Raman characterization of terrestrial analogs from the AMADEEâ€18 astronaut simulated mission using the ExoMars RLS simulator: Implications for Mars. Journal of Raman Spectroscopy, 2020, 51, 2525-2535.	2.5	5
30	UV Time-Resolved Laser-Induced Fluorescence Spectroscopy of Amino Acids Found in Meteorites: Implications for Space Science and Exploration. Astrobiology, 2021, 21, 1350-1362.	3.0	4
31	Statistical learning for the estimation of Judd-Ofelt parameters: A case study of Er3+: Doped tellurite glasses. Journal of Luminescence, 2021, 235, 118020.	3.1	4
32	Raman Characterization of the CanMars Rover Field Campaign Samples Using the Raman Laser Spectrometer ExoMars Simulator: Implications for Mars and Planetary Exploration. Astrobiology, 2022, , .	3.0	3
33	Clinical anisotropy: A case for shared decision making in the age of too much data and patient disâ€integration. Journal of Evaluation in Clinical Practice, 2020, 26, 604-609.	1.8	2
34	Remote science activities during the AMADEE-18 Mars analog mission: Preparation and execution during a simulated planetary surface mission. Journal of Space Safety Engineering, 2021, 8, 75-85.	0.9	2