José Antonio De La O Serna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2396732/publications.pdf

Version: 2024-02-01

		394421	361022
43	1,643	19	35
papers	citations	h-index	g-index
43	43	43	724
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Editorial: Machine Learning and Deep Learning for Physiological Signal Analysis. Frontiers in Physiology, 2022, 13, 887070.	2.8	1
2	Taylor–Fourier Filter-Bank Implemented With O-Splines for the Detection and Classification of Faults. IEEE Transactions on Industrial Informatics, 2021, 17, 3079-3089.	11.3	10
3	Assessing Synchrophasor Estimates of an Event Captured by a Phasor Measurement Unit. IEEE Transactions on Power Delivery, 2021, 36, 3109-3117.	4.3	12
4	Análisis de armónicas dinámicas con filtros de respuesta impulsional finita diseñados con O-splines. Ingenierias, 2021, 24, 3-21.	0.2	0
5	Dynamic Harmonic Analysis With FIR Filters Designed With O-Splines. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 5092-5100.	5.4	21
6	Dynamic phasor-driven digital distance relays protection. Electric Power Systems Research, 2020, 184, 106316.	3.6	8
7	EEG-Rhythm Specific Taylor–Fourier Filter Bank Implemented With O-Splines for the Detection of Epilepsy Using EEG Signals. IEEE Sensors Journal, 2020, 20, 6542-6551.	4.7	60
8	Model-based synchrophasor estimation by exploiting the eigensystem realization approach. Electric Power Systems Research, 2020, 182, 106249.	3.6	6
9	O-splines para analizar señales de oscilaciones de potencia. Ingenierias, 2020, 23, 42-61.	0.2	1
10	Real-time simulation of the Prony filter for identifying low frequency oscillations in short-time. , 2018, , .		2
11	Analyzing Power Oscillating Signals With the O-Splines of the Discrete Taylor–Fourier Transform. IEEE Transactions on Power Systems, 2018, 33, 7087-7095.	6.5	25
12	Detection of Life Threatening Ventricular Arrhythmia Using Digital Taylor Fourier Transform. Frontiers in Physiology, 2018, 9, 722.	2.8	42
13	Multi-dimensional ringdown modal analysis by filtering. Electric Power Systems Research, 2017, 143, 748-759.	3.6	17
14	Distance Relays Based on the Pub _newline ? Taylor–Kalman-Fourier Filter. IEEE Transactions on Power Delivery, 2016, 31, 928-935.	4.3	19
15	Identification of Electromechanical Modes Based on the Digital Taylor-Fourier Transform. IEEE Transactions on Power Systems, 2016, 31, 206-215.	6.5	52
16	Smart grids Part 2: Synchrophasor measurement challenges. IEEE Instrumentation and Measurement Magazine, 2015, 18, 13-16.	1.6	14
17	Smart grids Part 1: Instrumentation challenges. IEEE Instrumentation and Measurement Magazine, 2015, 18, 6-9.	1.6	13
18	Synchrophasor Measurement With Polynomial Phase-Locked-Loop Taylor–Fourier Filters. IEEE Transactions on Instrumentation and Measurement, 2015, 64, 328-337.	4.7	82

JOSé ANTONIO DE LA O SERNA

#	Article	IF	CITATIONS
19	Impedance estimation through the Taylor-Kalman-Fourier filter applied to distance relays. , 2014, , .		0
20	Polynomial Implementation of the Taylor–Fourier Transform for Harmonic Analysis. IEEE Transactions on Instrumentation and Measurement, 2014, 63, 2846-2854.	4.7	41
21	Synchrophasor Estimation Using Prony's Method. IEEE Transactions on Instrumentation and Measurement, 2013, 62, 2119-2128.	4.7	91
22	Dynamic Phasor Estimates Under the Bellman's Principle of Optimality: The Taylor-LQG-Fourier Filters. IEEE Transactions on Instrumentation and Measurement, 2013, 62, 3137-3147.	4.7	13
23	Taylor–Fourier Analysis of Blood Pressure Oscillometric Waveforms. IEEE Transactions on Instrumentation and Measurement, 2013, 62, 2511-2518.	4.7	29
24	Using Alternating Kalman Filtering to Analyze Oscillometric Blood Pressure Waveforms. IEEE Transactions on Instrumentation and Measurement, 2013, 62, 2621-2628.	4.7	21
25	Taylor-fourier analysis of blood pressure oscillometric waveforms. , 2012, , .		4
26	Using Kalman filtering to analyze oscillometric blood pressure waveforms. , 2012, , .		3
27	Taylor–Kalman–Fourier Filters for Instantaneous Oscillating Phasor and Harmonic Estimates. IEEE Transactions on Instrumentation and Measurement, 2012, 61, 941-951.	4.7	98
28	Instantaneous Oscillating Phasor Estimates With Taylor\$^K\$-Kalman Filters. IEEE Transactions on Power Systems, 2011, 26, 2336-2344.	6.5	92
29	Dynamic Harmonic Analysis Through Taylor–Fourier Transform. IEEE Transactions on Instrumentation and Measurement, 2011, 60, 804-813.	4.7	140
30	Maximally flat differentiators through WLS Taylor decomposition. , 2011, 21, 183-194.		20
31	Dynamic Phasor and Frequency Estimates Through Maximally Flat Differentiators. IEEE Transactions on Instrumentation and Measurement, 2010, 59, 1803-1811.	4.7	191
32	Instantaneous dynamic phasor estimates with Kalman filter. , 2010, , .		8
33	Shanks' Method for Dynamic Phasor Estimation. IEEE Transactions on Instrumentation and Measurement, 2008, 57, 813-819.	4.7	41
34	Dynamic phasor estimates through maximally flat differentiators. , 2008, , .		3
35	Reducing the Error in Phasor Estimates From Phasorlets in Fault Voltage and Current Signals. IEEE Transactions on Instrumentation and Measurement, 2007, 56, 856-866.	4.7	13
36	Reducing the Delay of Phasor Estimates Under Power System Oscillations. IEEE Transactions on Instrumentation and Measurement, 2007, 56, 2271-2278.	4.7	5

JOSé ANTONIO DE LA O SERNA

#	Article	IF	CITATIONS
37	Dynamic Phasor Estimates for Power System Oscillations. IEEE Transactions on Instrumentation and Measurement, 2007, 56, 1648-1657.	4.7	268
38	Phasor Estimation From Phasorlets. IEEE Transactions on Instrumentation and Measurement, 2005, 54, 134-143.	4.7	21
39	Improving phasor measurements under power system oscillations. IEEE Transactions on Power Systems, 2003, 18, 160-166.	6.5	71
40	On the use of amplitude shaping pulses as windows for harmonic analysis. IEEE Transactions on Instrumentation and Measurement, 2001, 50, 1556-1562.	4.7	17
41	New family of digital filters for phasor computation [power system relay protection]. IEEE Transactions on Power Delivery, 2000, 15, 86-91.	4.3	18
42	A new digital filter for phasor computation. II. Evaluation [power system protection]. IEEE Transactions on Power Systems, 1998, 13, 1032-1037.	6.5	20
43	A new digital filter for phasor computation. I. Theory [power system protection]. IEEE Transactions on Power Systems, 1998, 13, 1026-1031.	6.5	30