RocÃ-o C RodrÃ-guez-Arcos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2396030/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Asparagus Roots: From an Agricultural By-Product to a Valuable Source of Fructans. Foods, 2022, 11, 652.	4.3	7
2	Optimization of date seed oil extraction using the assistance of hydrothermal and ultrasound technologies. Grasas Y Aceites, 2022, 73, e457.	0.9	5
3	Phytochemical Characterization and Bioactivity of Asparagus acutifolius: A Focus on Antioxidant, Cytotoxic, Lipase Inhibitory and Antimicrobial Activities. Molecules, 2021, 26, 3328.	3.8	11
4	Characterization of phenolic compounds isolated from the Fraxinus angustifolia plant and several associated bioactivities. Journal of Herbal Medicine, 2021, 29, 100485.	2.0	8
5	Asparagus. , 2020, , 121-140.		1
6	Date Seeds: A Promising Source of Oil with Functional Properties. Foods, 2020, 9, 787.	4.3	66
7	Asparagus Cultivation Co-Products: From Waste To Chance. Food Science & Nutrition, 2020, 6, 1-4.	0.1	4
8	Inhibitory effect of the glucosinolate-myrosinase system on Phytophthora cinnamomi and Pythium spiculum. Plant Protection Science, 2019, 55, 93-101.	1.4	9
9	Hydrothermal treatments enhance the solubility and antioxidant characteristics of dietary fiber from asparagus by-products. Food and Bioproducts Processing, 2019, 114, 175-184.	3.6	16
10	Nutritional composition and antioxidant activity of different walnut varieties (Juglans) Tj ETQq0 0 0 rg	gBT /Overlo 0.9	ock 10 Tf 50 3 4
11	Comparative Analysis of Chemical Compounds Related to Quality of Canned Asparagus. Journal of Food and Nutrition Research (Newark, Del), 2019, 7, 171-182.	0.3	5
12	Inhibitory effect of Lycium europaeum extracts on phytopathogenic soil-borne fungi and the reduction of late wilt in maize. European Journal of Plant Pathology, 2018, 152, 249-265.	1.7	32
13	In Vitro Toxicity of Asparagus Saponins in Distinct Multidrug-Resistant Colon Cancer Cells. Chemistry and Biodiversity, 2018, 15, e1800282.	2.1	12
14	Saponin Profile of Wild Asparagus Species. Journal of Food Science, 2017, 82, 638-646.	3.1	23
15	The phytochemical and bioactivity profiles of wild Asparagus albus L. plant. Food Research International, 2017, 99, 720-729.	6.2	25
16	Asparagus macrorrhizus Pedrol, Regalado et López-Encina, an endemic species from Spain in extreme extinction risk, is a valuable genetic resource for asparagus breeding. Genetic Resources and Crop Evolution, 2017, 64, 1581-1594.	1.6	9
17	Enzymatic conversion of date fruit fiber concentrates into a new product enriched in antioxidant soluble fiber. LWT - Food Science and Technology, 2017, 75, 727-734.	5.2	29
18	Saponins from edible spears of wild asparagus inhibit AKT, p70S6K, and ERK signalling, and induce apoptosis through G0/G1 cell cycle arrest in human colon cancer HCT-116 cells. Journal of Functional Foods, 2016, 26, 1-10.	3.4	47

#	Article	IF	CITATIONS
19	Quality Characteristics and Antioxidant Properties of Muffins Enriched with Date Fruit (<i>Phoenix) Tj ETQq1 1</i>	0.784314 2.6	rgBT ₂₁ /Overloo
20	Valorization of Tunisian secondary date varieties (Phoenix dactylifera L.) by hydrothermal treatments: New fiber concentrates with antioxidant properties. LWT - Food Science and Technology, 2015, 60, 518-524.	5.2	32
21	Cell Wall Bound Anionic Peroxidases from Asparagus Byproducts. Journal of Agricultural and Food Chemistry, 2014, 62, 9644-9650.	5.2	1
22	Antifungal activity of asparagus extracts against phytopathogenic Fusarium oxysporum. Scientia Horticulturae, 2014, 171, 51-57.	3.6	32
23	Asparagus Byproducts as a New Source of Peroxidases. Journal of Agricultural and Food Chemistry, 2013, 61, 6167-6174.	5.2	10
24	Saponin Profile of Green Asparagus Genotypes. Journal of Agricultural and Food Chemistry, 2013, 61, 11098-11108.	5.2	21
25	Preparation of bioactive extracts from asparagus by-product. Food and Bioproducts Processing, 2013, 91, 74-82.	3.6	62
26	Optimization of a Method for the Profiling and Quantification of Saponins in Different Green Asparagus Genotypes. Journal of Agricultural and Food Chemistry, 2013, 61, 6250-6258.	5.2	30
27	Dietary Fiber from Tunisian Common Date Cultivars (Phoenix dactylifera L.): Chemical Composition, Functional Properties, and Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 2012, 60, 3658-3664.	5.2	52
28	Cell Wall Polysaccharides of Near-Isogenic Lines of Melon (Cucumis meloL.) and Their Inbred Parentals Which Show Differential Flesh Firmness or Physiological Behavior. Journal of Agricultural and Food Chemistry, 2011, 59, 7773-7784.	5.2	35
29	The Flavonol Isorhamnetin Exhibits Cytotoxic Effects on Human Colon Cancer Cells. Journal of Agricultural and Food Chemistry, 2010, 58, 10869-10875.	5.2	88
30	Effect of extraction method on chemical composition and functional characteristics of high dietary fibre powders obtained from asparagus by-products. Food Chemistry, 2009, 113, 665-671.	8.2	126
31	Effect of the extraction method on phytochemical composition and antioxidant activity of high dietary fibre powders obtained from asparagus by-products. Food Chemistry, 2009, 116, 484-490.	8.2	70
32	3,4-Dihydroxyphenylglycol (DHPG): An Important Phenolic Compound Present in Natural Table Olives. Journal of Agricultural and Food Chemistry, 2009, 57, 6298-6304.	5.2	29
33	Olive stone an attractive source of bioactive and valuable compounds. Bioresource Technology, 2008, 99, 5261-5269.	9.6	274
34	Characterization of Asparagus Lignin by HPLC. Journal of Food Science, 2008, 73, C526-32.	3.1	7
35	Flavonoid Profile of Green Asparagus Genotypes. Journal of Agricultural and Food Chemistry, 2008, 56, 6977-6984.	5.2	56
36	An investigation on dihydroxy-isochromans in extra virgin olive oil. Natural Product Research, 2008, 22, 1403-1409.	1.8	9

#	Article	IF	CITATIONS
37	ANTIOXIDANTS FROM ASPARAGUS SPEARS: PHENOLICS. Acta Horticulturae, 2008, , 247-254.	0.2	26
38	Effect of Steam Treatment of Alperujo on the Composition, Enzymatic Saccharification, and in Vitro Digestibility of Alperujo. Journal of Agricultural and Food Chemistry, 2007, 55, 136-142.	5.2	31
39	Identification of Flavonoid Diglycosides in Several Genotypes of Asparagus from the Huétor-TÃijar Population Variety. Journal of Agricultural and Food Chemistry, 2007, 55, 10028-10035.	5.2	38
40	Effects of storage conditions on the accumulation of ferulic acid derivatives in white asparagus cell walls. Journal of the Science of Food and Agriculture, 2007, 87, 286-296.	3.5	39
41	Antioxidant activity of effluents during the purification of hydroxytyrosol and 3,4-dihydroxyphenyl glycol from olive oil waste. European Food Research and Technology, 2007, 224, 733-741.	3.3	54
42	Dietary fibre from vegetable products as source of functional ingredients. Trends in Food Science and Technology, 2006, 17, 3-15.	15.1	393
43	Extraction of interesting organic compounds from olive oil waste. Grasas Y Aceites, 2006, 57, .	0.9	88
44	Cell wall phenolics of white and green asparagus. Journal of the Science of Food and Agriculture, 2005, 85, 971-978.	3.5	28
45	Antioxidant Activity of Ethanolic Extracts from Several Asparagus Cultivars. Journal of Agricultural and Food Chemistry, 2005, 53, 5212-5217.	5.2	98
46	Mechanical properties of white and green asparagus: changes related to modifications of cell wall components. Journal of the Science of Food and Agriculture, 2004, 84, 1478-1486.	3.5	36
47	Ferulic Acid Crosslinks in Asparagus Cell Walls in Relation to Texture. Journal of Agricultural and Food Chemistry, 2004, 52, 4740-4750.	5.2	34
48	Total Recovery of the Waste of Two-Phase Olive Oil Processing:Â Isolation of Added-Value Compounds. Journal of Agricultural and Food Chemistry, 2004, 52, 5849-5855.	5.2	71
49	Production in Large Quantities of Highly Purified Hydroxytyrosol from Liquidâ^'Solid Waste of Two-Phase Olive Oil Processing or "Alperujo― Journal of Agricultural and Food Chemistry, 2002, 50, 6804-6811.	5.2	170
50	Effect of Storage on Wall-Bound Phenolics in Green Asparagus. Journal of Agricultural and Food Chemistry, 2002, 50, 3197-3203.	5.2	50
51	Mechanical properties of green asparagus. Journal of the Science of Food and Agriculture, 2002, 82, 293-300.	3.5	25
52	Factors affecting the changes in texture of dressed ("aliñadas") olives. European Food Research and Technology, 2002, 214, 237-241.	3.3	14
53	Olive Fruit Cell Wall:Â Degradation of Pectic Polysaccharides during Ripening. Journal of Agricultural and Food Chemistry, 2001, 49, 409-415.	5.2	51
54	Olive Fruit Cell Wall:Â Degradation of Cellulosic and Hemicellulosic Polysaccharides during Ripening. Journal of Agricultural and Food Chemistry, 2001, 49, 2008-2013.	5.2	22

#	Article	IF	CITATIONS
55	Effect of dressings "(aliños)" on olive texture: cellulase, polygalacturonase and glycosidase activities of garlic and lemon present in brines. European Food Research and Technology, 2001, 212, 465-468.	3.3	7
56	Steam-explosion of olive stones: hemicellulose solubilization and enhancement of enzymatic hydrolysis of cellulose. Bioresource Technology, 2001, 79, 53-61.	9.6	130
57	Dietary fibre content of table olives processed under different European styles: study of physico-chemical characteristics. Journal of the Science of Food and Agriculture, 2000, 80, 1903-1908.	3.5	41
58	Cell wall polysaccharides implied in green olive behaviour during the pitting process. European Food Research and Technology, 2000, 211, 181-184.	3.3	3
59	Characterization of the lignin obtained by alkaline delignification and of the cellulose residue from steam-exploded olive stones. Bioresource Technology, 1999, 68, 121-132.	9.6	117
60	Postharvest Changes in White Asparagus Cell Wall during Refrigerated Storage. Journal of Agricultural and Food Chemistry, 1999, 47, 3551-3557.	5.2	33
61	Turnover of White Asparagus Cell Wall Polysaccharides during Postharvest Storage. Journal of Agricultural and Food Chemistry, 1999, 47, 4525-4531.	5.2	13
()	POSTHARVEST CHANGES ON CELL WALL AND PEROXIDASES OF WHITE ASPARAGUS (ASPARAGUS OFFICINALIS) ΤϳͺΕͺͺϘϥ) 0 0 rgBT /Ov

62 POSTHARVEST CHANGES ON CELL WALL AND PEROXIDASES OF WHITE ASPARAGUS (ASPARAGUS OFFICINALIS) 1j.El.QqU 0.0 rgB1 /0v

63	Activity of cell wall-associated enzymes in ripening olive fruit. Physiologia Plantarum, 1995, 93, 651-658.	5.2	32
64	Asparagus Fibres as Reinforcing Materials for Developing 100% Biodegradable Packaging. , 0, , 224-228.		0