
Soon-Il An

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2396028/publications.pdf Version: 2024-02-01

SOON-LI AN

#	Article	IF	CITATIONS
1	Two Types of El Niño Events: Cold Tongue El Niño and Warm Pool El Niño. Journal of Climate, 2009, 22, 1499-1515.	3.2	1,137
2	The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geoscience, 2010, 3, 391-397.	12.9	1,029
3	El Niño–Southern Oscillation complexity. Nature, 2018, 559, 535-545.	27.8	702
4	ENSO and greenhouse warming. Nature Climate Change, 2015, 5, 849-859.	18.8	596
5	Nonlinearity and Asymmetry of ENSO*. Journal of Climate, 2004, 17, 2399-2412.	3.2	395
6	Interdecadal Change of the Structure of the ENSO Mode and Its Impact on the ENSO Frequency*. Journal of Climate, 2000, 13, 2044-2055.	3.2	365
7	ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing. Reviews of Geophysics, 2018, 56, 185-206.	23.0	330
8	The Influence of a Weakening of the Atlantic Meridional Overturning Circulation on ENSO. Journal of Climate, 2007, 20, 4899-4919.	3.2	282
9	Strong El Niño events and nonlinear dynamical heating. Geophysical Research Letters, 2003, 30, 20-1.	4.0	258
10	Warm Pool and Cold Tongue El Niño Events as Simulated by the GFDL 2.1 Coupled GCM. Journal of Climate, 2010, 23, 1226-1239.	3.2	189
11	Thermocline and Zonal Advective Feedbacks Within the Equatorial Ocean Recharge Oscillator Model for ENSO. Geophysical Research Letters, 1999, 26, 2989-2992.	4.0	187
12	Linking Emergence of the Central Pacific El Niño to the Atlantic Multidecadal Oscillation. Journal of Climate, 2015, 28, 651-662.	3.2	163
13	Collective Role of Thermocline and Zonal Advective Feedbacks in the ENSO Mode*. Journal of Climate, 2001, 14, 3421-3432.	3.2	155
14	ENSO Suppression due to Weakening of the North Atlantic Thermohaline Circulation*. Journal of Climate, 2005, 18, 3122-3139.	3.2	153
15	Response of El Niño sea surface temperature variability to greenhouse warming. Nature Climate Change, 2014, 4, 786-790.	18.8	147
16	Why the properties of El Niño changed during the late 1970s. Geophysical Research Letters, 2001, 28, 3709-3712.	4.0	139
17	Decadal change in relationship between east Asian and WNP summer monsoons. Geophysical Research Letters, 2005, 32, .	4.0	138
18	Interannual Variations of the Tropical Ocean Instability Wave and ENSO. Journal of Climate, 2008, 21, 3680-3686.	3.2	124

#	Article	IF	CITATIONS
19	Recent progress on two types of El Niño: Observations, dynamics, and future changes. Asia-Pacific Journal of Atmospheric Sciences, 2014, 50, 69-81.	2.3	124
20	Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature, 2013, 504, 126-130.	27.8	116
21	Role of the ENSO–Indian Ocean coupling on ENSO variability in a coupled GCM. Geophysical Research Letters, 2006, 33, .	4.0	112
22	The Effect of Orbital Forcing on the Mean Climate and Variability of the Tropical Pacific. Journal of Climate, 2007, 20, 4147-4159.	3.2	111
23	The role of mean state on changes in El Niño's flavor. Climate Dynamics, 2011, 37, 1205-1215.	3.8	103
24	A method for detecting season-dependent modes of climate variability: S-EOF analysis. Geophysical Research Letters, 2005, 32, .	4.0	96
25	A review of interdecadal changes in the nonlinearity of the El Niño-Southern Oscillation. Theoretical and Applied Climatology, 2009, 97, 29-40.	2.8	93
26	Mechanisms of Locking of the El Niño and La Niña Mature Phases to Boreal Winter*. Journal of Climate, 2001, 14, 2164-2176.	3.2	92
27	An eigen analysis of the interdecadal changes in the structure and frequency of ENSO mode. Geophysical Research Letters, 2000, 27, 2573-2576.	4.0	90
28	Decadal amplitude modulation of two types of ENSO and its relationship with the mean state. Climate Dynamics, 2012, 38, 2631-2644.	3.8	85
29	El Niño–La Niña Asymmetry in the Coupled Model Intercomparison Project Simulations*. Journal of Climate, 2005, 18, 2617-2627.	3.2	84
30	Changes in weather and climate extremes over Korea and possible causes: A review. Asia-Pacific Journal of Atmospheric Sciences, 2015, 51, 103-121.	2.3	82
31	Changes in El Niño and La Niña teleconnections over North Pacific–America in the global warming simulations. Theoretical and Applied Climatology, 2010, 100, 275-282.	2.8	76
32	A Systematic Approximation of the SST Anomaly Equation for ENSO Journal of the Meteorological Society of Japan, 2001, 79, 1-10.	1.8	73
33	Successive Modulation of ENSO to the Future Greenhouse Warming. Journal of Climate, 2008, 21, 3-21.	3.2	72
34	ENSO and East Asian winter monsoon relationship modulation associated with the anomalous northwest Pacific anticyclone. Climate Dynamics, 2017, 49, 1157-1179.	3.8	66
35	Interdecadal changes in the El Nino-La Nina asymmetry. Geophysical Research Letters, 2004, 31, .	4.0	61
36	Preconditions for El Niño and La Niña onsets and their relation to the Indian Ocean. Geophysical Research Letters, 2005, 32, .	4.0	57

#	Article	IF	CITATIONS
37	Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models. Climate of the Past, 2020, 16, 1777-1805.	3.4	56
38	The Role of Zonal Advection Feedback in Phase Transition and Growth of ENSO in the Cane-Zebiak Model. Journal of the Meteorological Society of Japan, 1999, 77, 1151-1160.	1.8	54
39	Feedback processes responsible for El Niño‣a Niña amplitude asymmetry. Geophysical Research Letters, 2015, 42, 5556-5563.	4.0	54
40	Interactive Feedback between the Tropical Pacific Decadal Oscillation and ENSO in a Coupled General Circulation Model. Journal of Climate, 2009, 22, 6597-6611.	3.2	53
41	Symmetric and antisymmetric mass exchanges between the equatorial and off-equatorial Pacific associated with ENSO. Journal of Geophysical Research, 2003, 108, .	3.3	52
42	Recent and future sea surface temperature trends in tropical pacific warm pool and cold tongue regions. Climate Dynamics, 2012, 39, 1373-1383.	3.8	51
43	Mid-Holocene tropical Pacific climate state, annual cycle, and ENSO in PMIP2 and PMIP3. Climate Dynamics, 2014, 43, 957-970.	3.8	49
44	Role of nonlinear ocean dynamic response to wind on the asymmetrical transition of El Niño and La Niña. Geophysical Research Letters, 2017, 44, 393-400.	4.0	47
45	A Nonlinear Analysis of the ENSO Cycle and Its Interdecadal Changes*. Journal of Climate, 2005, 18, 3229-3239.	3.2	41
46	Conditional Maximum Covariance Analysis and Its Application to the Tropical Indian Ocean SST and Surface Wind Stress Anomalies*. Journal of Climate, 2003, 16, 2932-2938.	3.2	39
47	The Influence of ENSO on the Generation of Decadal Variability in the North Pacific*. Journal of Climate, 2007, 20, 667-680.	3.2	39
48	Modeling evidence for enhanced El Niño-Southern Oscillation amplitude during the Last Glacial Maximum. Paleoceanography, 2004, 19, n/a-n/a.	3.0	35
49	A global-scale multidecadal variability driven by Atlantic multidecadal oscillation. National Science Review, 2020, 7, 1190-1197.	9.5	35
50	ENSO-Like and ENSO-Induced Tropical Pacific Decadal Variability in CGCMs. Journal of Climate, 2013, 26, 1485-1501.	3.2	34
51	On the subarctic North Atlantic cooling due to global warming. Theoretical and Applied Climatology, 2013, 114, 9-19.	2.8	33
52	Altered atmospheric responses to eastern Pacific and central Pacific El Niños over the North Atlantic region due to stratospheric interference. Climate Dynamics, 2014, 42, 159-170.	3.8	33
53	A near-annual coupled ocean-atmosphere mode in the equatorial Pacific ocean. Geophysical Research Letters, 2003, 30, .	4.0	32
54	A dynamic link between the basin-scale and zonal modes in the Tropical Indian Ocean. Theoretical and Applied Climatology, 2004, 78, 203.	2.8	32

#	Article	IF	CITATIONS
55	Hysteresis of the intertropical convergence zone to CO2 forcing. Nature Climate Change, 2022, 12, 47-53.	18.8	32
56	The Forced and Intrinsic Low-Frequency Modes in the North Pacific*. Journal of Climate, 2005, 18, 876-885.	3.2	31
57	A physical mechanism of the precipitation dipole in the western United States based on PDOâ€storm track relationship. Geophysical Research Letters, 2014, 41, 4719-4726.	4.0	31
58	ENSO Transition Asymmetry: Internal and External Causes and Intermodel Diversity. Geophysical Research Letters, 2018, 45, 5095-5104.	4.0	31
59	The impact of tropical western Pacific convection on the North Pacific atmospheric circulation during the boreal winter. Climate Dynamics, 2014, 43, 2227-2238.	3.8	30
60	Kelvin and Rossby Wave Contributions to the SST Oscillation of ENSO. Journal of Climate, 1998, 11, 2461-2469.	3.2	29
61	The Inverse Effect of Annual-Mean State and Annual-Cycle Changes on ENSO. Journal of Climate, 2010, 23, 1095-1110.	3.2	28
62	Atmospheric Responses of Gill-Type and Lindzen–Nigam Models to Global Warming. Journal of Climate, 2011, 24, 6165-6173.	3.2	27
63	A Near-Annual Pacific Ocean Basin Mode. Journal of Climate, 2004, 17, 2478-2488.	3.2	26
64	Inter-decadal change in El Niño-Southern Oscillation examined with Bjerknes stability index analysis. Climate Dynamics, 2016, 47, 967-979.	3.8	25
65	Mean sea surface temperature changes influence ENSO-related precipitation changes in the mid-latitudes. Nature Communications, 2021, 12, 1495.	12.8	24
66	A Further Investigation of the Recharge Oscillator Paradigm for ENSO Using a Simple Coupled Model with the Zonal Mean and Eddy Separated. Journal of Climate, 2000, 13, 1987-1993.	3.2	23
67	Changes in the leading ENSO modes associated with the late 1970s climate shift: Role of surface zonal current. Geophysical Research Letters, 2006, 33, .	4.0	23
68	Interaction between Near-Annual and ENSO Modes in a CGCM Simulation: Role of the Equatorial Background Mean State. Journal of Climate, 2007, 20, 1035-1052.	3.2	23
69	Linear solutions for the frequency and amplitude modulation of ENSO by the annual cycle. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 63, 238.	1.7	23
70	A linkage between the North Atlantic Oscillation and its downstream development due to the existence of a blocking ridge. Journal of Geophysical Research, 2011, 116, .	3.3	22
71	Vertical structure variability and equatorial waves during central Pacific and eastern Pacific El Niños in a coupled general circulation model. Climate Dynamics, 2012, 38, 2275-2289.	3.8	22
72	Low-Frequency Variability of Temperature in the Vicinity of the Equatorial Pacific Thermocline in SODA: Role of Equatorial Wave Dynamics and ENSO Asymmetry. Journal of Climate, 2009, 22, 5783-5795.	3.2	21

#	Article	IF	CITATIONS
73	Role of tropical atlantic SST variability as a modulator of El Niño teleconnections. Asia-Pacific Journal of Atmospheric Sciences, 2014, 50, 247-261.	2.3	21
74	The effects of <scp>ENSO</scp> under negative <scp>AO</scp> phase on spring dust activity over northern China: an observational investigation. International Journal of Climatology, 2015, 35, 935-947.	3.5	21
75	The internal origin of the west-east asymmetry of Antarctic climate change. Science Advances, 2020, 6, eaaz1490.	10.3	21
76	Midâ€latitude leading doubleâ€dip La Niña. International Journal of Climatology, 2021, 41, E1353.	3.5	21
77	Global Cooling Hiatus Driven by an AMOC Overshoot in a Carbon Dioxide Removal Scenario. Earth's Future, 2021, 9, e2021EF002165.	6.3	21
78	Projected Heat Wave Characteristics over the Korean Peninsula During the Twenty-First Century. Asia-Pacific Journal of Atmospheric Sciences, 2018, 54, 53-61.	2.3	20
79	North Atlantic observations sharpen meridional overturning projections. Climate Dynamics, 2018, 50, 4171-4188.	3.8	20
80	ENSO Feedbacks and Associated Time Scales of Variability in a Multimodel Ensemble. Journal of Climate, 2010, 23, 3181-3204.	3.2	19
81	Why the twenty-first century tropical Pacific trend pattern cannot significantly influence ENSO amplitude?. Climate Dynamics, 2015, 44, 133-146.	3.8	18
82	Interannual variability of western North Pacific SST anomalies and its impact on North Pacific and North America. Climate Dynamics, 2017, 49, 3787-3798.	3.8	18
83	Quantitative assessment of the climate components driving the pacific decadal oscillation in climate models. Theoretical and Applied Climatology, 2013, 112, 431-445.	2.8	17
84	Role of the western hemisphere warm pool in climate variability over the western North Pacific. Climate Dynamics, 2019, 53, 2743-2755.	3.8	17
85	Seasonal locking of the ENSO asymmetry and its influence on the seasonal cycle of the tropical eastern Pacific sea surface temperature. Atmospheric Research, 2009, 94, 3-9.	4.1	16
86	Inverse relationship between the equatorial eastern Pacific annual-cycle and ENSO amplitudes in a coupled general circulation model. Climate Dynamics, 2013, 40, 663-675.	3.8	16
87	Feedback process responsible for intermodel diversity of ENSO variability. Geophysical Research Letters, 2017, 44, 4272-4279.	4.0	16
88	Arctic Sea Ice Loss as a Potential Trigger for Central Pacific El Niño Events. Geophysical Research Letters, 2020, 47, e2020GL087028.	4.0	16
89	Asymmetrical response of summer rainfall in East Asia to CO2 forcing. Science Bulletin, 2022, 67, 213-222.	9.0	16
90	Contrasting response of hydrological cycle over land and ocean to a changing CO2 pathway. Npj Climate and Atmospheric Science, 2021, 4, .	6.8	16

#	Article	IF	CITATIONS
91	Sensitivity of ENSO to Stratification in a Recharge–Discharge Conceptual Model. Journal of Climate, 2011, 24, 4332-4349.	3.2	15
92	An alterative effect by the tropical North Atlantic SST in intraseasonally varying El Niñ0 teleconnection over the North Atlantic. Tellus, Series A: Dynamic Meteorology and Oceanography, 2013, 65, 19863.	1.7	15
93	Intensity changes of Indian Ocean dipole mode in a carbon dioxide removal scenario. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	15
94	Influence of Recent Stratification Changes on ENSO Stability in a Conceptual Model of the Equatorial Pacific. Journal of Climate, 2013, 26, 4790-4802.	3.2	14
95	Western North Pacific anticyclone change associated with the El Niño–Indian Ocean Dipole coupling. International Journal of Climatology, 2019, 39, 2505-2521.	3.5	14
96	Diversity of North Pacific Meridional Mode and Its Distinct Impacts on El Niñoâ€ S outhern Oscillation. Geophysical Research Letters, 2020, 47, e2020GL088993.	4.0	14
97	A mechanism for the multi-decadal climate oscillation in the North Pacific. Theoretical and Applied Climatology, 2008, 91, 77-84.	2.8	13
98	Understanding ENSO Regime Behavior upon an Increase in the Warm-Pool Temperature Using a Simple ENSO Model. Journal of Climate, 2011, 24, 1438-1450.	3.2	13
99	Seasonality of Tropical Instability Waves and Its Feedback to the Seasonal Cycle in the Tropical Eastern Pacific. Scientific World Journal, The, 2012, 2012, 1-11.	2.1	13
100	Asymmetric impact of Atlantic Multidecadal Oscillation on El Niño and La Niña characteristics. Geophysical Research Letters, 2015, 42, 4998-5004.	4.0	13
101	Impact of ENSO on East Asian winter monsoon during interglacial periods: effect of orbital forcing. Climate Dynamics, 2017, 49, 3209-3219.	3.8	12
102	Feedback process responsible for the suppression of ENSO activity during the mid-Holocene. Theoretical and Applied Climatology, 2018, 132, 779-790.	2.8	12
103	Propagating decadal sea surface temperature signal identified in modern proxy records of the tropical Pacific. Climate Dynamics, 2006, 28, 163-179.	3.8	11
104	Blunt ocean dynamical thermostat in response of tropical eastern Pacific SST to global warming. Theoretical and Applied Climatology, 2014, 118, 173-183.	2.8	11
105	Seesawing of Winter Temperature Extremes between East Asia and North America. Journal of Climate, 2021, 34, 4423-4434.	3.2	11
106	Tropical Pacific basin-wide adjustment and oceanic waves. Geophysical Research Letters, 2001, 28, 3975-3978.	4.0	10
107	Changes in the role of Pacific decadal oscillation on sea ice extent variability across the mid-1990s. Scientific Reports, 2020, 10, 17564.	3.3	10
108	Rateâ€Dependent Hysteresis of the Atlantic Meridional Overturning Circulation System and Its Asymmetric Loop. Geophysical Research Letters, 2021, 48, e2020GL090132.	4.0	10

#	Article	IF	CITATIONS
109	Effects of freshwater runoff on a tropical pacific climate in the HadGEM2. Asia-Pacific Journal of Atmospheric Sciences, 2012, 48, 457-463.	2.3	9
110	Fokker–Planck dynamics of the El Niño-Southern Oscillation. Scientific Reports, 2020, 10, 16282.	3.3	9
111	Characteristics of the North Pacific Oscillation in CMIP5 Models in Relation to Atmospheric Mean States. Journal of Climate, 2020, 33, 3809-3825.	3.2	9
112	Untangling El Niño‣a Niña Asymmetries Using a Nonlinear Coupled Dynamic Index. Geophysical Research Letters, 2020, 47, e2019GL085881.	4.0	9
113	Role of the Bay of Bengal warming in the Indian summer monsoon rainfall trend. Climate Dynamics, 2022, 59, 1733-1751.	3.8	9
114	Local versus nonâ€local atmospheric weather noise and the North Pacific SST variability. Geophysical Research Letters, 2007, 34, .	4.0	8
115	Timescaleâ€dependent <scp>AMOC–AMO</scp> relationship in an earth system model of intermediate complexity. International Journal of Climatology, 2021, 41, E3298.	3.5	8
116	Increased Indian Ocean-North Atlantic Ocean warming chain under greenhouse warming. Nature Communications, 2022, 13, .	12.8	8
117	A novel method to test non-exclusive hypotheses applied to Arctic ice projections from dependent models. Nature Communications, 2019, 10, 3016.	12.8	6
118	On the Slow Mode of a Simple Air-sea Coupled Model. Journal of the Meteorological Society of Japan, 2000, 78, 159-165.	1.8	5
119	Relative roles of the equatorial upper ocean zonal current and thermocline in determining the timescale of the tropical climate system. Theoretical and Applied Climatology, 2005, 81, 121-132.	2.8	5
120	Maintenance of PDO variability during the mid-holocene in PMIP2. Climate Dynamics, 2013, 40, 1291-1299.	3.8	5
121	Southward displacement of the upper atmosphere zonal jet in the eastern north Pacific due to global warming. Geophysical Research Letters, 2014, 41, 7861-7867.	4.0	5
122	Changes in ENSO Activity During the Last 6,000ÂYears Modulated by Background Climate State. Geophysical Research Letters, 2018, 45, 2467-2475.	4.0	5
123	Decadal phase shift of summertime Arctic dipole pattern and its nonlinear effect on sea ice extent. International Journal of Climatology, 2021, 41, 4732-4742.	3.5	5
124	Quantifying the residual effects of ENSO on lowâ€frequency variability in the tropical Pacific. International Journal of Climatology, 2013, 33, 1047-1052.	3.5	4
125	Origin of earlyâ€spring central Pacific warming as the 1982–1983 El Niño precursor. International Journal of Climatology, 2018, 38, 2899-2906.	3.5	4
126	Impact of Pacific Decadal Oscillation on Frequency Asymmetry of El Niño and La Niña Events. Advances in Atmospheric Sciences, 2018, 35, 493-494.	4.3	4

#	Article	IF	CITATIONS
127	Interdecadal Change in the Relationship Between the North Pacific Oscillation and the Pacific Meridional Mode and Its Impact on ENSO. Asia-Pacific Journal of Atmospheric Sciences, 2018, 54, 63-76.	2.3	4
128	A low order dynamical model for runoff predictability. Climate Dynamics, 2021, 56, 399-422.	3.8	4
129	A novel approach for discovering stochastic models behind data applied to El Niño–Southern Oscillation. Scientific Reports, 2021, 11, 2648.	3.3	4
130	Seasonal Gap Theory for ENSO Phase Locking. Journal of Climate, 2021, , 1-44.	3.2	4
131	Interaction between equatorially symmetric and asymmetric tropical eastern Pacific SSTs. Theoretical and Applied Climatology, 2010, 102, 151-158.	2.8	3
132	Impact of freshwater discharge from the Greenland ice sheet on North Atlantic climate variability. Theoretical and Applied Climatology, 2013, 112, 29-43.	2.8	3
133	Accounting for skill in trend, variability, and autocorrelation facilitates better multi-model projections: Application to the AMOC and temperature time series. PLoS ONE, 2019, 14, e0214535.	2.5	3
134	General circulation and global heat transport in a quadrupling CO2 pulse experiment. Scientific Reports, 2022, 12, .	3.3	3
135	Sensitivity of the equatorial air—sea coupled system to the zonal phase difference between SST and wind stress. Advances in Atmospheric Sciences, 2001, 18, 155-165.	4.3	2
136	Impact of North Atlantic Freshwater Forcing on the Pacific Meridional Overturning Circulation under Glacial and Interglacial Conditions. Journal of Climate, 2019, 32, 4641-4659.	3.2	2
137	Teleconnections in the Atmosphere. , 2020, , 54-88.		2
138	Slow and soft passage through tipping point of the Atlantic Meridional Overturning Circulation in a changing climate. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	2
139	Influence of retreating Barents–Kara sea ice on the periodicity of El <scp>Niño–Southern</scp> Oscillation. International Journal of Climatology, 0, , .	3.5	2
140	Internal Climate Variability in the Present Climate and the Change in ENSO Amplitude in Future Climate Simulations. Frontiers in Climate, 0, 4, .	2.8	2
141	Impacts of ocean gateway and basin width on Tertiary tropical climate variability in a prototype model. Theoretical and Applied Climatology, 2012, 107, 155-164.	2.8	1
142	Improved probabilistic twenty-first century projections of sea surface temperature over East Asian marginal seas by considering uncertainty owing to model error and internal variability. Climate Dynamics, 2019, 53, 6075-6087.	3.8	1
143	A flexible data-driven cyclostationary model for the probability density of El Niño–Southern Oscillation. Chaos, 2021, 31, 103126.	2.5	1
144	Atmosphere-driven cold SST biases over the western North Pacific in the GloSea5 seasonal forecast system. Climate Dynamics, 2022, 59, 2571-2584.	3.8	1

#	Article	IF	CITATIONS
145	Robust oppositeâ€changing tendency between the thermal advection damping by mean current and thermoâ€dynamical damping of ENSO Feedback in a changing climate. International Journal of Climatology, 2019, 39, 5822-5829.	3.5	0