Min Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2395358/publications.pdf

Version: 2024-02-01

394286 330025 1,468 49 19 37 citations h-index g-index papers 49 49 49 1510 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The comparison of two activation techniques to prepare activated carbon from corn cob. Biomass and Bioenergy, 2013, 48, 250-256.	2.9	164
2	Removal of sulfonamide antibiotics and human metabolite by biochar and biochar/H2O2 in synthetic urine. Water Research, 2018, 147, 91-100.	5.3	136
3	The contribution of oxygen-containing functional groups to the gas-phase adsorption of volatile organic compounds with different polarities onto lignin-derived activated carbon fibers. Environmental Science and Pollution Research, 2019, 26, 7195-7204.	2.7	118
4	The superoxide radicals' production via persulfate activated with CuFe2O4@Biochar composites to promote the redox pairs cycling for efficient degradation of o-nitrochlorobenzene in soil. Journal of Hazardous Materials, 2020, 400, 122887.	6.5	112
5	Selective Degradation of Electron-Rich Organic Pollutants Induced by CuO@Biochar: The Key Role of Outer-Sphere Interaction and Singlet Oxygen. Environmental Science & Dechnology, 2022, 56, 10710-10720.	4.6	95
6	Study on adsorption properties and mechanism of Pb2+ with different carbon based adsorbents. Science of the Total Environment, 2018, 618, 1416-1422.	3.9	90
7	Retention of arsenic in coal combustion flue gas at high temperature in the presence of CaO. Fuel, 2020, 259, 116249.	3.4	68
8	Enhanced degradation of Rhodamine B via \hat{l}_{\pm} -Fe2O3 microspheres induced persulfate to generate reactive oxidizing species. Chemosphere, 2020, 243, 125322.	4.2	55
9	Preparation of Polyethylenimineâ€Functionalized Graphene Oxide Composite and Its Application in Electrochemical Ammonia Sensors. Electroanalysis, 2013, 25, 523-530.	1.5	49
10	In-Furnace Control of Arsenic Vapor Emissions Using Fe ₂ O ₃ Microspheres with Good Sintering Resistance. Environmental Science & E	4.6	36
11	The preparation and performance of lignin-based activated carbon fiber adsorbents for treating gaseous streams. Frontiers of Chemical Science and Engineering, 2017, 11, 328-337.	2.3	32
12	Alumina-Supported Spinel NiAl ₂ O ₄ as a Catalyst for Re-forming Pyrolysis Gas. Industrial & Samp; Engineering Chemistry Research, 2019, 58, 11770-11778.	1.8	31
13	Hydrogen production from bio-oil by chemical looping reforming. Journal of Thermal Analysis and Calorimetry, 2014, 115, 1921-1927.	2.0	28
14	Facile synthesis of CoFe2O4@BC activated peroxymonosulfate for p-nitrochlorobenzene degradation: Matrix effect and toxicity evaluation. Science of the Total Environment, 2022, 828, 154275.	3.9	28
15	Comparison between in-situ and ex-situ catalytic pyrolysis of sawdust for gas production. Journal of Analytical and Applied Pyrolysis, 2018, 135, 189-198.	2.6	25
16	Adsorption of sulfur dioxide using nickel oxide/carbon adsorbents produced by one-step pyrolysis method. Journal of Analytical and Applied Pyrolysis, 2013, 99, 137-142.	2.6	24
17	Capture of arsenic in coal combustion flue gas at high temperature in the presence of CaSiO3 with good anti-sintering. Fuel Processing Technology, 2020, 205, 106428.	3.7	23
18	Alkali promoted the adsorption of toluene by adjusting the surface properties of lignin-derived carbon fibers. Environmental Science and Pollution Research, 2019, 26, 22284-22294.	2.7	22

#	Article	IF	CITATIONS
19	New insight on the combined effects of hydrothermal treatment and FeSO4/Ca(ClO)2 oxidation for sludge dewaterability improvement: From experimental to theoretical investigation. Fuel Processing Technology, 2020, 197, 106196.	3.7	22
20	Inducing Ni phyllosilicate formation over a carbon fiber support as a catalyst for the CO2 reforming of methane. Applied Catalysis A: General, 2020, 592, 117418.	2.2	20
21	The application of prepared porous carbon materials: Effect of different components on the heavy metal adsorption. Waste Management and Research, 2016, 34, 534-541.	2.2	19
22	The Synergy Effect of Ni-M (M = Mo, Fe, Co, Mn or Cr) Bicomponent Catalysts on Partial Methanation Coupling with Water Gas Shift under Low H2/CO Conditions. Catalysts, 2017, 7, 51.	1.6	18
23	The pyrolysis of multi-component municipal solid waste in fixed bed reactor for activated carbon production. Journal of Analytical and Applied Pyrolysis, 2014, 109, 278-282.	2.6	17
24	A Fenton-like system of biochar loading Fe–Al layered double hydroxides (FeAl-LDH@BC) / H2O2 for phenol removal. Chemosphere, 2021, 266, 128992.	4.2	16
25	Hydroxyl-promoter on hydrated Ni-(Mg, Si) attapulgite with high metal sintering resistance for biomass derived gas reforming. International Journal of Hydrogen Energy, 2019, 44, 20056-20067.	3.8	15
26	The Effect of Surface Functionalization on the Immobilization of Gold Nanoparticles on Graphene Sheets. Journal of Nanotechnology, 2012, 2012, 1-5.	1.5	14
27	Synergistic effect of underwater arc discharge plasma and Fe2O3-CoFe2O4 enhanced PMS activation to efficiently degrade refractory organic pollutants. Separation and Purification Technology, 2022, 290, 120834.	3.9	14
28	Steam reforming of $\hat{l}\pm$ -methylnaphthalene as a model compound of biomass tar over Ni-based catalyst for hydrogen-rich gas. Korean Journal of Chemical Engineering, 2018, 35, 394-408.	1.2	13
29	Low-temperature hydrothermal liquefaction of pomelo peel for production of 5-hydroxymethylfurfural-rich bio-oil using ionic liquid loaded ZSM-5. Bioresource Technology, 2022, 352, 127050.	4.8	13
30	Direct Electrochemistry and Electrocatalysis of Hemoglobin–TiO ₂ Whisker Film Modified Glassy Carbon Electrode. Electroanalysis, 2010, 22, 668-672.	1.5	12
31	Preparation of ZnO-Loaded Lignin-Based Carbon Fiber for the Electrocatalytic Oxidation of Hydroquinone. Catalysts, 2017, 7, 180.	1.6	12
32	CO2 reforming of methane over carbon fiber-lanthanum oxide supported bimetallic nickel-cobalt catalysts: Kinetic and mechanistic studies. Chemical Engineering Research and Design, 2021, 145, 236-246.	2.7	12
33	Combining Carbon Fibers with Ni/γ–Al2O3 Used for Syngas Production: Part A: Preparation and Evaluation of Complex Carrier Catalysts. Catalysts, 2018, 8, 658.	1.6	11
34	Incorporation of humic acid into biomass derived carbon for enhanced adsorption of phenol. Scientific Reports, 2019, 9, 19931.	1.6	11
35	Flue Gas Hg ⁰ Removal by FeCl ₃ -Impregnated LTA and MFI Zeolites: Influences of Topology and Cation Sites. Energy & En	2.5	11
36	Insights into the mechanism of redox pairs and oxygen vacancies of Fe2O3@CoFe2O4 hybrids for efficient refractory organic pollutants degradation. Chemosphere, 2022, 291, 133069.	4.2	11

#	Article	IF	CITATIONS
37	Preparation and application of nickel based carbon fibers for the steam reforming of methane. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120, 477-488.	0.8	10
38	High performance single material-based triboelectric nanogenerators made of hetero-triboelectric half-cell plant skins. Nano Energy, 2022, 94, 106959.	8.2	9
39	Promotion Effect of SiO ₂ on the Catalytic Performance of Ni/CF for Biomass Derived Gas Reforming. Industrial & Derived Gas Refo	1.8	8
40	New Insight on the Combined Effects of Hydrothermal Treatment and FeSO ₄ /Ca(ClO) ₂ Oxidation for Sludge Dewaterability Improvement: Moisture Distribution and Noncovalent Interaction Calculation. ACS Omega, 2020, 5, 15891-15900.	1.6	8
41	Promoting adsorption of organic pollutants via tailoring surface physicochemical properties of biomass-derived carbon-attapulgite. Environmental Science and Pollution Research, 2021, 28, 11106-11118.	2.7	7
42	New anthracene–tetrathiafulvalene derivative-encapsulated SWNT nanocomposite and its application for biosensing. Journal of Colloid and Interface Science, 2010, 343, 48-51.	5.0	6
43	Effect of <scp> CO ₂ </scp> atmosphere on biomass pyrolysis and inâ€ine catalytic reforming. International Journal of Energy Research, 2020, 44, 8936-8950.	2.2	6
44	The formation of novel carbon/carbon composite by chemical vapor deposition: An efficient adsorbent for enhanced desulfurization performance. Journal of Analytical and Applied Pyrolysis, 2016, 118, 34-41.	2.6	5
45	The influence of different surface-modification treatments on biomass-based carbons and their effects on adsorption of carbon dioxide. International Journal of Green Energy, 2016, 13, 1084-1089.	2.1	4
46	Optimized Reforming of Biomass Derived Gas Based on Thermodynamic and Kinetics Analysis with Activated Carbon Fibers Supported Ni-Al2O3. Bioenergy Research, 2020, 13, 581-590.	2.2	4
47	CO2 Reforming of Methane Over Ni/Carbon Fibers-La2O3 Catalyst: Effects of Ultrasound-Assisted Method and La2O3 Doping on Catalytic Properties and Activity. Waste and Biomass Valorization, 2019, 10, 3897-3905.	1.8	3
48	Electrochemistry and electrocatalysis with hemoglobin in hollow polyelectrolyte fibrous mats. Journal of Applied Polymer Science, 2010, 117, 1613-1617.	1.3	1
49	The combined effects of hydrothermal treatment and Na2S2O8/ CuFe2O4 magnetic oxidation on sludge dewaterability improvement. E3S Web of Conferences, 2020, 194, 04023.	0.2	0