Bernard Pons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2395191/publications.pdf

Version: 2024-02-01

186265 197818 2,660 107 28 h-index citations papers

49 g-index 108 108 108 1614 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photoelectron elliptical dichroism spectroscopy of resonance-enhanced multiphoton ionization <i>via</i> the 3s, 3p and 3d Rydberg series in fenchone. Physical Chemistry Chemical Physics, 2022, 24, 6415-6427.	2.8	10
2	Femtosecond-resolved Rydberg states dynamics in chiral molecules., 2021,,.		0
3	Enhanced chiral-sensitivity of Coulomb-focused electrons in strong field ionization. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 184002.	1.5	2
4	Ultrafast relaxation investigated by photoelectron circular dichroism: an isomeric comparison of camphor and fenchone. Physical Chemistry Chemical Physics, 2021, 23, 25612-25628.	2.8	11
5	Revealing the Influence of Molecular Chirality on Tunnel-Ionization Dynamics. Physical Review X, 2021, $11, \dots$	8.9	7
6	Controlling sub-cycle instantaneous optical chirality in the photoionization of chiral molecules. Journal of Physics: Conference Series, 2020, 1412, 072027.	0.4	0
7	Energy deposit by electron excitation in CnN+ projectiles (n=1-3) colliding at in termediate velocity with He atoms: semi-empirical estimates and calculations. Journal of Physics: Conference Series, 2020, 1412, 142026.	0.4	0
8	Spatial molecular interferometry via multidimensional high-harmonic spectroscopy. Nature Photonics, 2020, 14, 188-194.	31.4	38
9	Investigating Shakeoff Process in Precise Correlation Measurements in Nuclear \hat{I}^2 Decay. Springer Proceedings in Physics, 2020, , 903-909.	0.2	0
	Excitation, ionization, neutralization and anionic production in collisions of C+, N+ and C n N+ (n =) Tj ETQq0 0 0	DT /O	rlock 10 Tf 5
10	Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 195204.	1.5	0
10	·	_	
	Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 195204. Controlling Subcycle Optical Chirality in the Photoionization of Chiral Molecules. Physical Review X,	1.5	0
11	Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 195204. Controlling Subcycle Optical Chirality in the Photoionization of Chiral Molecules. Physical Review X, 2019, 9, . Electron Wavefunctions Probed by All-Optical Attosecond Interferometry., 2019, , . Electronic wavefunctions probed by all-optical attosecond interferometry. Nature Photonics, 2019, Electron shakeoff following the <mml:math< td=""><td>8.9 31.4</td><td>0 38 0</td></mml:math<>	8.9 31.4	0 38 0
11 12	Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 195204. Controlling Subcycle Optical Chirality in the Photoionization of Chiral Molecules. Physical Review X, 2019, 9, . Electron Wavefunctions Probed by All-Optical Attosecond Interferometry., 2019, , . Electronic wavefunctions probed by all-optical attosecond interferometry. Nature Photonics, 2019, 13, 54-59 Electron Shakeoff following the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>β</mml:mi><mml:mo>+<mml:mmultiscripts><mml:mi>Ne</mml:mi> cmml:mooe/><mml:mo>+<mml:mo>><mml:mo>><mml:moooe></mml:moooe><mml:moooe></mml:moooe><mml:moooe></mml:moooe><mml:moooe></mml:moooe><mml:moooe></mml:moooe><mml:moooe></mml:moooe><mml:moooe></mml:moooe><mml:moooe></mml:moooe><mml:moooe></mml:moooe><mml:moooe></mml:moooe><mml:moooe></mml:moooe><mml:moooe></mml:moooe><mml:moooe <mml:moooe=""></mml:moooe><mml:moooe <mml:moooe=""></mml:moooe><mml:moooe></mml:moooe><mml:moooe <mml:moooe=""></mml:moooe><mml:moooe <mml:moooe="" <moooficeror=""></mml:moooe> xmml:moooc/ xmm</mml:mo></mml:mo></mml:mo></mml:mmultiscripts></mml:mo></mml:msup></mml:math>	8.9 31.4	0 38 0
11 12 13	Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 195204. Controlling Subcycle Optical Chirality in the Photoionization of Chiral Molecules. Physical Review X, 2019, 9, . Electron Wavefunctions Probed by All-Optical Attosecond Interferometry., 2019, , . Electronic wavefunctions probed by all-optical attosecond interferometry. Nature Photonics, 2019, 13, 54-59 Electron shakeoff following the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>î²</mml:mi><mml:mo>+<mml:momultiscripts><mml:mi>Ne</mml:mi><mml:none< td=""><td>31.4</td><td>0 38 0 35 sup></td></mml:none<></mml:momultiscripts></mml:mo></mml:msup></mml:math>	31.4	0 38 0 35 sup>
11 12 13	Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 195204. Controlling Subcycle Optical Chirality in the Photoionization of Chiral Molecules. Physical Review X, 2019, 9, . Electron Wavefunctions Probed by All-Optical Attosecond Interferometry., 2019, , . Electronic wavefunctions probed by all-optical attosecond interferometry. Nature Photonics, 2019, 13, 54-59, 14-59, 15-59, 16-5	31.4 > <td>0 38 0 35 sup></td>	0 38 0 35 sup>
11 12 13 14	Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 195204. Controlling Subcycle Optical Chirality in the Photoionization of Chiral Molecules. Physical Review X, 2019, 9, . Electron Wavefunctions Probed by All-Optical Attosecond Interferometry. , 2019, , . Electronic wavefunctions probed by all-optical attosecond interferometry. Nature Photonics, 2019, 13, 54-59 Electron Shakeoff following the <mml:math xmlns:mml="http://www.w3.org/1998/Math/Math/ML"><mml:msup><mml:mi>β</mml:mi><mml:mo>+</mml:mo>+ <mml:mo> (p><mml:mo> +</mml:mo> <mml:mprescripts p=""><mml:none p=""><mml:mo> +</mml:mo> <mml:mprescripts p=""><mml:moah 14,="" 2018,="" 484-489.<="" chiral="" circular="" dichroism="" http:="" in="" molecules.="" nature="" photoexcitation="" physics,="" td="" www.w3"="" xmlns:mml="http://www.w3.org/nml:mmo> </mml:mmultiscripts> </mml:math xmlns:mml="><td>31.4 ><td>0 38 0 35 sup></td></td></mml:moah></mml:mprescripts></mml:none></mml:mprescripts></mml:mo></mml:msup></mml:math>	31.4 > <td>0 38 0 35 sup></td>	0 38 0 35 sup>

#	Article	IF	Citations
19	Switching classical trajectory Monte Carlo method to describe two-active-electron collisions. Physical Review A, 2016, 94, .	2.5	9
20	Probing ultrafast dynamics of chiral molecules using time-resolved photoelectron circular dichroism. Faraday Discussions, 2016, 194, 325-348.	3.2	65
21	Relaxation Dynamics in Photoexcited Chiral Molecules Studied by Time-Resolved Photoelectron Circular Dichroism: Toward Chiral Femtochemistry. Journal of Physical Chemistry Letters, 2016, 7, 4514-4519.	4.6	81
22	Precision measurements with LPCTrap at GANIL. Hyperfine Interactions, 2015, 236, 1-7.	0.5	16
23	Electron capture and ionization processes in high velocity C _n ⁺ , C-Ar and C _n ⁺ , C-He collisions. Journal of Physics: Conference Series, 2015, 635, 032084.	0.4	0
24	Classical treatment of Li2++Ar and He2++Ar collisions. Journal of Physics: Conference Series, 2015, 635, 022050.	0.4	0
25	Using GPU parallelization to perform realistic simulations of the LPCTrap experiments. Hyperfine Interactions, 2015, 235, 87-95.	0.5	5
26	Semiclassical description of high-order-harmonic spectroscopy of the Cooper minimum in krypton. Physical Review A, 2015, 91, .	2.5	20
27	Probing molecular chirality on a sub-femtosecondÂtimescale. Nature Physics, 2015, 11, 654-658.	16.7	219
28	Electron capture and ionization processes in high-velocity Cn+, C–Ar and Cn+, C–He collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 075201.	1.5	9
29	A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments. Nature Photonics, 2015, 9, 93-98.	31.4	217
30	Resolving vibration in H++H2 charge transfer collisions. Journal of Physics: Conference Series, 2014, 488, 102009.	0.4	0
31	Classical treatment of ionization and electron capture in ion-H2O collisions at intermediate energies. , 2013, , . New Light Shed on Charge Transfer in Fundamental mml:math		1
32	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msup><mml:mi mathvariant="bold">H<mml:mo mathvariant="bold">+</mml:mo></mml:mi </mml:msup> <mml:mo mathvariant="bold">+<mml:msub><mml:mi< td=""><td>7.8</td><td>20</td></mml:mi<></mml:msub></mml:mo 	7.8	20
33	mathvariant="bold">H <mml:mn>2</mml:mn> Collisions. Physical glaplay="illing">Collisions. Physical glaplay="illing">C	2.5	19
34	High-Resolution Probe of Coherence in Low-Energy Charge Exchange Collisions with Oriented Targets. Physical Review Letters, 2013, 111, 133201.	7.8	5
35	Excitation cross sections for Li ^{3 +} , Ne ^{10 +} and Ar ^{18 +} +H(1s) collisions of interest in fusion plasma diagnostics. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 095701.	1.5	9
36	High-harmonic transient grating spectroscopy of NO2 electronic relaxation. Journal of Chemical Physics, 2012, 137, 224303.	3.0	23

#	Article	IF	CITATIONS
37	Study of Inelastic Processes in Ion-H2O Collisions Using Classical Trajectory Monte Carlo and Semiclassical Methods. Interdisciplinary Research on Particle Collisions and Quantitative Spectroscopy, 2012, , 231-270.	0.5	1
38	Role of the Ionic Potential in High Harmonic Generation. Physical Review Letters, 2012, 108, 203001.	7.8	33
39	Atomic-matter-wave diffraction evidenced in low-energy Na <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow></mml:mrow><mml:mo>+</mml:mo></mml:msup></mml:math> +Rb charge-exchange collisions. Physical Review A, 2012. 85	2.5	9
40	Hydrodynamical description of strong field-driven electron dynamics. Journal of Physics: Conference Series, 2012, 388, 032019.	0.4	0
41	High-order Harmonic Spectroscopy: Experimental and Theoretical study of Cooper Minimum in Argon. Journal of Physics: Conference Series, 2012, 388, 022023.	0.4	1
42	Study of low energy ion-atom collisions using a magneto-optical trap. Journal of Physics: Conference Series, 2012, 388, 082005.	0.4	0
43	Ion-water collisions at intermediate energies. Journal of Physics: Conference Series, 2012, 388, 102007.	0.4	2
44	Hemiquantal treatment of low energy p+H ₂ collisions. Journal of Physics: Conference Series, 2012, 388, 102054.	0.4	0
45	Classical treatment of ion-H <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math> O collisions with a three-center model potential. Physical Review A. 2011. 83	2.5	78
46	High-order harmonic spectroscopy of the Cooper minimum in argon: Experimental and theoretical study. Physical Review A, $2011, 83, .$	2.5	100
47	Classical interpretation of probability oscillations in low-energy atomic collisions. Physical Review A, 2011, 83, .	2.5	7
48	Influence of nuclear exchange on nonadiabatic electron processes in H\$^+\$++H\$_2\$2 collisions. Journal of Chemical Physics, 2010, 133, 244307.	3.0	8
49	Self-consistent Bohmian description of strong field-driven electron dynamics. Physical Review A, 2010, 82, .	2.5	41
50	Near-Threshold High-Order Harmonic Spectroscopy with Aligned Molecules. Physical Review Letters, 2010, 105, 143904.	7.8	82
51	Calculation of total cross sections and effective emission coefficients for B ^{5 +} collisions with ground-state and excited hydrogen. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 144007.	1.5	11
52	Below-Threshold High-Order Harmonics Probed with Aligned Molecules. , 2010, , .		0
53	Two active-electron classical trajectory Monte Carlo methods for ion-He collisions. Physical Review A, 2009, 80, .	2.5	9
54	One-electron atom in a strong and short laser pulse: Comparison of classical and quantum descriptions. Physical Review A, 2009, 80, .	2.5	23

#	Article	IF	CITATIONS
55	Electron capture and nuclear exchange in H ⁺ + H ₂ collisions at low impact energies. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 105207.	1.5	2
56	New classical CTMC approaches to A $<$ sup $><$ i $>q<$ i $>+<$ sup $>+$ He processes. Journal of Physics: Conference Series, 2009, 163, 012069.	0.4	1
57	H ⁺ + H ₂ collisions at low impact energies. Journal of Physics: Conference Series, 2009, 194, 102015.	0.4	0
58	Classical three-center model potential calculations for ion-H ₂ O collisions. Journal of Physics: Conference Series, 2009, 194, 102035.	0.4	0
59	Calculation of total cross sections for ionization and charge transfer in collisions of multicharged ions with water molecules. , 2008, , .		6
60	Ab initiocalculation of charge-transfer and excitation cross sections in Li++H(1s)collisions. Physical Review A, 2008, 77, .	2.5	19
61	Modified nanoplasma model for laser-cluster interaction. Physical Review A, 2008, 77, .	2.5	20
62	Asymptotic transitions around conical intersections in ion-diatom collisions. Physical Review A, 2008, 77, .	2.5	2
63	Vibronic treatment of vibrational excitation and electron capture inH++H2(HD,D2, …) collisions at low impact energies. Physical Review A, 2007, 75, .	2.5	13
64	Classical calculation of ionization and electron-capture total cross sections inH++H2Ocollisions. Physical Review A, 2007, 76, .	2.5	43
65	Electron capture and ionization in collisions of multiply charged ions with H(2s). Journal of Physics: Conference Series, 2007, 58, 203-206.	0.4	1
66	Dynamics of rare gas nanoclusters irradiated by short and intense laser pulses. High Energy Density Physics, 2007, 3, 191-197.	1.5	10
67	Caractérisation spectrale et temporelle de l'émission X issue de l'interaction laser-agrégats. European Physical Journal Special Topics, 2006, 138, 73-81.	0.2	1
68	Charge transfer and ionization involving argon ions and neutral hydrogen. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, L91-L97.	1.5	13
69	Recommended data for capture cross sections in B5++ H collisions. Plasma Physics and Controlled Fusion, 2006, 48, 1585-1604.	2.1	14
70	Semiclassical treatment of excitation and electron loss in Aq++H(1s)collisions using spherical Bessel functions. Physical Review A, 2006, 74, .	2.5	18
71	Classical and semiclassical treatments of highly charged ions+H(1s) collisions. Nuclear Instruments & Methods in Physics Research B, 2005, 235, 315-320.	1.4	2
72	Screening models for laser–cluster interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 3405-3422.	1.5	17

#	Article	IF	Citations
73	Investigation of laser-irradiated Ar cluster dynamics fromK-shell x-ray emission measurements. Physical Review E, 2005, 71, 066410.	2.1	42
74	Classical and semi-classical treatments of Li3+, Ne10++H(1s) collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 4323-4338.	1.5	28
75	Accuracy of the classical trajectory Monte Carlo method for electron capture inLi3+andNe10++H(1s)collisions. Physical Review A, 2004, 70, .	2.5	32
76	Comparison of hyperspherical versus common-reaction-coordinate close-coupling methods for ion-atom collisions at low energies. Physical Review A, 2004, 69, .	2.5	23
77	Spheroidal close-coupling scheme to describe ionization processes in one-electron diatomic systems. Physical Review A, 2003, 67, .	2.5	7
78	Quantum chemistry calculation of excited three center systems: Theoretical study of He2++H2 collisions. Journal of Chemical Physics, 2003, 119, 325-337.	3.0	9
79	Shifts in electron capture to the continuum at low collision energies: Enhanced role of target postcollision interactions. Physical Review A, 2003, 67, .	2.5	26
80	Quasifree expansion picture of break-up events: An analysis of ionizing systems. Physical Review A, 2003, 67, .	2.5	4
81	Molecular treatment of single (dissociative and nondissociative) and double electron capture in He2ÂÂ H2collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, L135-L141.	1.5	18
82	Classical description of the electron capture to the continuum cusp formation in ion-atom collisions. Physical Review A, 2002, 65, .	2.5	13
83	Description of ionization in the molecular approach to atomic collisions. II. Physical Review A, 2002, 65, .	2.5	12
84	Study of molecular orbitals in momentum space. International Journal of Quantum Chemistry, 2002, 86, 46-58.	2.0	0
85	Novel Model Potential Treatment of Charge Transfer Cross Sections in C4+ and N5+ Collisions with H2. Physica Scripta, 2001, T92, 373-375.	2.5	0
86	Single- and double-electron capture in low-energy Ne10+-He collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 2759-2779.	1.5	32
87	Picturing the ionization process in ion-atom collisions with time-dependent quantum and classical methods. Physical Review A, 2001, 63, .	2.5	17
88	lonization dynamics in interactions of atoms with ultra-short and intense laser pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, L571-L576.	1.5	37
89	Model potential treatment of C4++ H2collisions at low impact energies. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 3107-3122.	1.5	17
90	Monocentric Close-Coupling Expansion to Provide Ejected Electron Distributions for Ionization In Atomic Collisions. Physical Review Letters, 2000, 84, 4569-4572.	7.8	49

#	Article	lF	CITATIONS
91	Ability of monocentric close-coupling expansions to describe ionization in atomic collisions. Physical Review A, 2000, 63, .	2.5	34
92	Enhanced production of nonequivalent electron configurations $3\ln[\sup \hat{E}^1][\sup \hat{E}^1](n[\sup \hat{E}^1]\hat{a}\% *6)$ in slow keV Ne[sup 10+]+He collisions: Experiment and theory. , 1999, , .		0
93	Description of ionization in ion-atom collisions from low to intermediate energies. , 1999, , .		0
94	Molecular calculation of charge transfer cross sections in C4++H collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, L673-L679.	1.5	17
95	CROSS SECTIONS FOR ELECTRON CAPTURE FROM ATOMIC HYDROGEN BY FULLY STRIPPED IONS IN THE 0.05–1.00 a.u. IMPACT VELOCITY RANGE. Atomic Data and Nuclear Data Tables, 1998, 68, 279-302.	2.4	71
96	Convergent molecular close-coupling calculations for ion-atom collisions from low to intermediate energies. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, 3199-3214.	1.5	36
97	Quantal and semiclassical calculations of charge transfer cross sections in + H collisions for impact energies of. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, 3527-3545.	1.5	39
98	Description of ionization in the molecular approach to atomic collisions. Physical Review A, 1997, 55, 287-302.	2.5	24
99	Molecular treatment of ion-atom collisions at intermediate energies. AIP Conference Proceedings, 1996, , .	0.4	0
100	Total and partial cross-sections of electron transfer processes with hydrogen gas targets: Be4+, B5++ H(1s), H(2s). Physica Scripta, 1996, T62, 27-32.	2.5	13
101	Total and partial cross sections of electron transfer processes with hydrogen gas targets: Be4++ H2. Physica Scripta, 1996, T62, 33-38.	2.5	23
102	Capture, excitation and ionization in $H++He+(1s)$ collisions. Nuclear Instruments & Methods in Physics Research B, 1995, 98, 297-299.	1.4	1
103	Molecular treatment ofH++He+(1s)collisions including pseudostates. Physical Review A, 1995, 52, R2505-R2507.	2.5	7
104	Common translation factor method. Journal of Physics B: Atomic, Molecular and Optical Physics, 1994, 27, 3603-3634.	1.5	114
105	Common-translation-factor method with an atomic basis. Physical Review A, 1994, 50, 418-422.	2.5	7
106	Plane-wave and common-translation-factor treatments of He2++H collisions at high velocities. Physical Review A, 1992, 46, 5617-5630.	2.5	32
107	Double capture in C6+-He collisions at low impact energies. Journal of Physics B: Atomic, Molecular and Optical Physics, 1991, 24, L425-L430.	1.5	28