David J Rosario

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2395016/publications.pdf Version: 2024-02-01

		36303	25787
113	11,866	51	108
papers	citations	h-index	g-index
113	113	113	6158
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY. Astrophysical Journal, Supplement Series, 2011, 197, 35.	7.7	1,590
2	CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE <i>HUBBLE SPACE TELESCOPE</i> OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS. Astrophysical Journal, Supplement Series, 2011, 197, 36.	7.7	1,549
3	Extragalactic background light inferred from AEGIS galaxy-SED-type fractions. Monthly Notices of the Royal Astronomical Society, 2011, 410, 2556-2578.	4.4	563
4	THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS. Astrophysical Journal, Supplement Series, 2013, 208, 5.	7.7	544
5	CANDELS: THE PROGENITORS OF COMPACT QUIESCENT GALAXIES AT <i>z</i> â^1⁄4 2. Astrophysical Journal, 2013, 765, 104.	4.5	367
6	xCOLD GASS: The Complete IRAM 30 m Legacy Survey of Molecular Gas for Galaxy Evolution Studies. Astrophysical Journal, Supplement Series, 2017, 233, 22.	7.7	350
7	The Herschelâ~ PEP/HerMES luminosity function – I. Probing the evolution of PACS selected Galaxies to z ≃ 4. Monthly Notices of the Royal Astronomical Society, 2013, 432, 23-52.	4.4	341
8	CANDELS: CONSTRAINING THE AGN-MERGER CONNECTION WITH HOST MORPHOLOGIES AT <i>z</i> â ¹ /4 2. Astrophysical Journal, 2012, 744, 148.	4.5	330
9	SMOOTH(ER) STELLAR MASS MAPS IN CANDELS: CONSTRAINTS ON THE LONGEVITY OF CLUMPS IN HIGH-REDSHIFT STAR-FORMING GALAXIES. Astrophysical Journal, 2012, 753, 114.	4.5	271
10	The incidence of obscuration in active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3550-3567.	4.4	245
11	BULGE GROWTH AND QUENCHING SINCE <i>z</i> = 2.5 IN CANDELS/3D-HST. Astrophysical Journal, 2014, 788, 11.	4.5	244
12	The evolution of the dust and gas content in galaxies. Astronomy and Astrophysics, 2014, 562, A30.	5.1	220
13	A CANDELS-3D-HST SYNERGY: RESOLVED STAR FORMATION PATTERNS AT 0.7 < <i>z</i> < 1.5. Astrophysical Journal, 2013, 779, 135.	4.5	202
14	THE DEPENDENCE OF QUENCHING UPON THE INNER STRUCTURE OF GALAXIES AT 0.5 â ©½ <i>z</i> < 0.8 IN T DEEP2/AEGIS SURVEY. Astrophysical Journal, 2012, 760, 131.	HE 4.5	201
15	EVIDENCE FOR WIDE-SPREAD ACTIVE GALACTIC NUCLEUS-DRIVEN OUTFLOWS IN THE MOST MASSIVE <i>z </i> 1-2 STAR-FORMING GALAXIES. Astrophysical Journal, 2014, 796, 7.	¹ ⁄4 4.5	184
16	Enhanced star formation rates in AGN hosts with respect to inactive galaxies from PEP- <i>Herschel</i> observations. Astronomy and Astrophysics, 2012, 540, A109.	5.1	183
17	INSPIRALLING SUPERMASSIVE BLACK HOLES: A NEW SIGNPOST FOR GALAXY MERGERS. Astrophysical Journal, 2009, 698, 956-965.	4.5	163
18	A SEARCH FOR BINARY ACTIVE GALACTIC NUCLEI: DOUBLE-PEAKED [O III] AGNs IN THE SLOAN DIGITAL SKY SURVEY, Astrophysical Journal, 2010, 716, 866-877.	4.5	156

#	Article	IF	CITATIONS
19	Morphologies of zÂâ^1⁄4Â0.7 AGN host galaxies in CANDELS: no trend of merger incidence with AGN luminosity. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3342-3356.	4.4	132
20	ARE COMPTON-THICK AGNs THE MISSING LINK BETWEEN MERGERS AND BLACK HOLE GROWTH?. Astrophysical Journal, 2015, 814, 104.	4.5	125
21	CANDELS/GOODS-S, CDFS, AND ECDFS: PHOTOMETRIC REDSHIFTS FOR NORMAL AND X-RAY-DETECTED GALAXIES. Astrophysical Journal, 2014, 796, 60.	4.5	117
22	The VLA-COSMOS 3 GHz Large Project: AGN and host-galaxy properties out to <i>z</i> ≲ 6. Astronom Astrophysics, 2017, 602, A3.	$1_{5.1}$	113
23	THE BIASES OF OPTICAL LINE-RATIO SELECTION FOR ACTIVE GALACTIC NUCLEI AND THE INTRINSIC RELATIONSHIP BETWEEN BLACK HOLE ACCRETION AND GALAXY STAR FORMATION. Astrophysical Journal, 2015, 811, 26.	4.5	111
24	THE EVOLUTION OF METALLICITY AND METALLICITY GRADIENTS FROM $z = 2.7$ TO 0.6 WITH KMOS ^{3D} . Astrophysical Journal, 2016, 827, 74.	4.5	109
25	CANDELS VISUAL CLASSIFICATIONS: SCHEME, DATA RELEASE, AND FIRST RESULTS. Astrophysical Journal, Supplement Series, 2015, 221, 11.	7.7	106
26	HST/STIS optical spectroscopy of five super star clusters in the starburst galaxy M82. Monthly Notices of the Royal Astronomical Society, 2006, 370, 513-527.	4.4	102
27	FUELING ACTIVE GALACTIC NUCLEI. II. SPATIALLY RESOLVED MOLECULAR INFLOWS AND OUTFLOWS. Astrophysical Journal, 2014, 792, 101.	4.5	100
28	The mean star-forming properties of QSO host galaxies. Astronomy and Astrophysics, 2013, 560, A72.	5.1	99
29	NUCLEAR ACTIVITY IS MORE PREVALENT IN STAR-FORMING GALAXIES. Astrophysical Journal, 2013, 771, 63.	4.5	96
30	A CONSISTENT STUDY OF METALLICITY EVOLUTION AT 0.8 < <i>z</i> < 2.6. Astrophysical Journal Letters, 2014, 789, L40.	8.3	96
31	WIDESPREAD AND HIDDEN ACTIVE GALACTIC NUCLEI IN STAR-FORMING GALAXIES AT REDSHIFT >0.3. Astrophysical Journal, 2013, 764, 176.	4.5	95
32	THE JET-DRIVEN OUTFLOW IN THE RADIO GALAXY SDSS J1517+3353: IMPLICATIONS FOR DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEUS. Astrophysical Journal, 2010, 716, 131-143.	4.5	82
33	Decreased specific star formation rates in AGN host galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1841-1860.	4.4	79
34	Compton thick AGN in the XMM-COSMOS survey. Astronomy and Astrophysics, 2015, 573, A137.	5.1	77
35	Mapping the average AGN accretion rate in the SFR–M* plane for Herschelâ~selected galaxies at OÂ<ÂzÂâ‰Â2.5. Monthly Notices of the Royal Astronomical Society, 2015, 449, 373-389.	4.4	73
36	BAT AGN Spectroscopic Survey. XI. The Covering Factor of Dust and Gas in Swift/BAT Active Galactic Nuclei. Astrophysical Journal, 2019, 870, 31.	4.5	72

David J Rosario

#	Article	IF	CITATIONS
37	The mean star formation rates of unobscured QSOs: searching for evidence of suppressed or enhanced star formation. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2221-2240.	4.4	71
38	Resolving the Nuclear Obscuring Disk in the Compton-thick Seyfert Galaxy NGC 5643 with ALMA. Astrophysical Journal, 2018, 859, 144.	4.5	67
39	NEBULAR EXCITATION IN <i>z</i> â ¹ /4 2 STAR-FORMING GALAXIES FROM THE SINS AND LUCI SURVEYS: THE INFLUENCE OF SHOCKS AND ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2014, 781, 21.	4.5	65
40	THE QUASAR SDSS J105041.35+345631.3: BLACK HOLE RECOIL OR EXTREME DOUBLE-PEAKED EMITTER?. Astrophysical Journal, 2009, 707, 936-941.	4.5	64
41	EVOLUTION IN THE BLACK HOLE–GALAXY SCALING RELATIONS AND THE DUTY CYCLE OF NUCLEAR ACTIVITY IN STAR-FORMING GALAXIES. Astrophysical Journal, 2015, 802, 14.	4.5	63
42	The star formation rates of active galactic nuclei host galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 458, L34-L38.	3.3	63
43	On the relation of optical obscuration and X-ray absorption in Seyfert galaxies. Astronomy and Astrophysics, 2016, 586, A28.	5.1	62
44	INSIGHTS ON THE DUSTY TORUS AND NEUTRAL TORUS FROM OPTICAL AND X-RAY OBSCURATION IN A COMPLETE VOLUME LIMITED HARD X-RAY AGN SAMPLE. Astrophysical Journal, 2015, 806, 127.	4.5	61
45	The rapid growth phase of supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3118-3128.	4.4	58
46	The host galaxies of X-ray selected active galactic nuclei to <i>z</i> = 2.5: Structure, star formation, and their relationships from CANDELS and <i>Herschel</i> /PACS. Astronomy and Astrophysics, 2015, 573, A85.	5.1	58
47	LLAMA: normal star formation efficiencies of molecular gas in the centres of luminous Seyfert galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 473, 5658-5679.	4.4	57
48	ADAPTIVE OPTICS IMAGING OF QUASI-STELLAR OBJECTS WITH DOUBLE-PEAKED NARROW LINES: ARE THEY DUAL ACTIVE GALACTIC NUCLEI?. Astrophysical Journal, 2011, 739, 44.	4.5	56
49	X-UDS: The <i>Chandra</i> Legacy Survey of the UKIDSS Ultra Deep Survey Field. Astrophysical Journal, Supplement Series, 2018, 236, 48.	7.7	55
50	SPATIALLY RESOLVED SPECTROSCOPY OF SDSS J0952+2552: A CONFIRMED DUAL ACTIVE GALACTIC NUCLEUS. Astrophysical Journal Letters, 2011, 738, L2.	8.3	54
51	An over-massive black hole in a typical star-forming galaxy, 2 billion years after the Big Bang. Science, 2015, 349, 168-171.	12.6	52
52	Evidence for Merger-driven Growth in Luminous, High-z, Obscured AGNs in the CANDELS/COSMOS Field. Astrophysical Journal, 2018, 853, 63.	4.5	52
53	BAT AGN Spectroscopic Survey. XX. Molecular Gas in Nearby Hard-X-Ray-selected AGN Galaxies. Astrophysical Journal, Supplement Series, 2021, 252, 29.	7.7	52
54	Black hole accretion preferentially occurs in gas-rich galaxies*. Monthly Notices of the Royal Astronomical Society, 2014, 441, 1059-1065.	4.4	49

#	Article	IF	CITATIONS
55	X-RAY SELECTED AGN HOST GALAXIES ARE SIMILAR TO INACTIVE GALAXIES OUT TO <i>z</i> = 3: RESULTS FROM CANDELS/CDF-S. Astrophysical Journal, 2013, 763, 59.	4.5	48
56	<i>Hubble Space Telescope</i> Space Telescope Imaging Spectrograph Spectroscopy of the Environment in the Starburst Core of M82. Astrophysical Journal, 2007, 671, 358-373.	4.5	46
57	The VANDELS ESO public spectroscopic survey. Astronomy and Astrophysics, 2021, 647, A150.	5.1	46
58	Galaxy mergers in <scp>eagle</scp> do not induce a significant amount of black hole growth yet do increase the rate of luminous AGN. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5713-5733.	4.4	45
59	Identifying the subtle signatures of feedback from distant AGN using ALMA observations and the EAGLE hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1288-1305.	4.4	44
60	Fundamental differences in the radio properties of red and blue quasars: evolution strongly favoured over orientation. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3109-3128.	4.4	44
61	Multi-wavelength Properties of Type 1 and Type 2 AGN Host Galaxies in the Chandra-COSMOS Legacy Survey. Astrophysical Journal, 2019, 872, 168.	4.5	44
62	THE DEEP2 GALAXY REDSHIFT SURVEY: THE VORONOI-DELAUNAY METHOD CATALOG OF GALAXY GROUPS. Astrophysical Journal, 2012, 751, 50.	4.5	40
63	An Accreting Supermassive Black Hole Irradiating Molecular Gas in NGC 2110. Astrophysical Journal Letters, 2019, 875, L8.	8.3	38
64	An Imperfectly Passive Nature: Bright Submillimeter Emission from Dust-obscured Star Formation in the zA=A3.717 "Passive―System, ZF 20115. Astrophysical Journal Letters, 2017, 844, L10.	8.3	35
65	LLAMA: The <i>M</i> _{BH} – <i>σ</i> _{â<†} relation of the most luminous local AGNs. Astronomy and Astrophysics, 2020, 634, A114.	5.1	33
66	AEGIS: A MULTIWAVELENGTH STUDY OF <i>SPITZER</i> POWER-LAW GALAXIES. Astrophysical Journal, 2010, 717, 1181-1201.	4.5	32
67	Type 2 AGN Host Galaxies in the Chandra-COSMOS Legacy Survey: No Evidence of AGN-driven Quenching. Astrophysical Journal, 2017, 841, 102.	4.5	32
68	The KMOS ^{3D} Survey: Rotating Compact Star-forming Galaxies and the Decomposition of Integrated Line Widths*. Astrophysical Journal, 2018, 855, 97.	4.5	32
69	Fundamental differences in the radio properties of red and blue quasars: enhanced compact AGN emission in red quasars. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4802-4818.	4.4	31
70	Jet-Gas Interaction in Markarian 78. II. Ionization Mechanisms. Astronomical Journal, 2005, 129, 104-124.	4.7	30
71	THE MID-INFRARED EMISSION OF NARROW-LINE ACTIVE GALACTIC NUCLEI: STAR FORMATION, NUCLEAR ACTIVITY, AND TWO POPULATIONS REVEALED BY <i>WISE</i>	4.5	29
72	STELLAR MASS–GAS-PHASE METALLICITY RELATION AT 0.5 â‰ÂzÂ≤0.7: A POWER LAW WITH INCREASING	SÇATTER	29

TOWARD THE LOW-MASS REGIME. Astrophysical Journal, 2016, 822, 103.

#	Article	lF	CITATIONS
73	KASHz: No evidence for ionised outflows instantaneously suppressing star formation in moderate luminosity AGN at <i>z</i> â^¼ 1.4–2.6. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3194-3216.	4.4	29
74	The multiwavelength properties of red QSOs: Evidence for dusty winds as the origin of QSO reddening. Astronomy and Astrophysics, 2021, 649, A102.	5.1	29
75	DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. II. THE CASE OF EQUAL PEAKS. Astrophysical Journal, 2012, 752, 63.	4.5	28
76	The infrared luminosities of â^1⁄4332Â000 SDSS galaxies predicted from artificial neural networks and the <i>Herschel</i> StripeÂ82 survey. Monthly Notices of the Royal Astronomical Society, 2016, 455, 370-385.	4.4	28
77	Local SDSS galaxies in the Herschel Stripe 82 survey: a critical assessment of optically derived star formation rates. Monthly Notices of the Royal Astronomical Society, 2016, 457, 2703-2721.	4.4	27
78	The Galaxy Activity, Torus, and Outflow Survey (GATOS). Astronomy and Astrophysics, 2021, 652, A99.	5.1	26
79	Fundamental differences in the radio properties of red and blue quasars: insight from the LOFAR Two-metre Sky Survey (LoTSS). Monthly Notices of the Royal Astronomical Society, 2020, 494, 3061-3079.	4.4	25
80	BAT AGN Spectroscopic Survey. VIII. Type 1 AGN with Massive Absorbing Columns. Astrophysical Journal, 2018, 856, 154.	4.5	24
81	Cross-calibration of CO- versus dust-based gas masses and assessment of the dynamical mass budget in Herschel-SDSS Stripe82 galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1442-1458.	4.4	23
82	Observational constraints on the physics behind the evolution of active galactic nuclei since zâ^1/4 1. Monthly Notices of the Royal Astronomical Society, 2011, 418, 2590-2603.	4.4	22
83	A New Compton-thick AGN in Our Cosmic Backyard: Unveiling the Buried Nucleus in NGC 1448 with NuSTAR. Astrophysical Journal, 2017, 836, 165.	4.5	22
84	ALMA observations of a <i>z</i> â‰^ 3.1 protocluster: star formation from active galactic nuclei and Lyman-alpha blobs in an overdense environment. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2944-2952.	4.4	21
85	ALMA resolves extended star formation in high- <i>z</i> ACN host galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 457, L122-L126.	3.3	21
86	The nuclear outflow in NGC 2110. Monthly Notices of the Royal Astronomical Society, 0, 408, 565-579.	4.4	18
87	NO MORE ACTIVE GALACTIC NUCLEI IN CLUMPY DISKS THAN IN SMOOTH GALAXIES AT <i>z</i> â^1/4 2 IN CANDELS/3D-HST. Astrophysical Journal, 2014, 793, 101.	4.5	18
88	The bulge-disc decomposition of AGN host galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2391-2404.	4.4	17
89	Deep ALMA photometry of distant X-ray AGN: improvements in star formation rate constraints, and AGN identification. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3721-3739.	4.4	17
90	The post- <i>Herschel</i> view of intrinsic AGN emission: constructing templates for galaxy and AGN emission at IR wavelengths. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2598-2621.	4.4	17

David J Rosario

#	Article	IF	CITATIONS
91	LBQS 0103-2753: A BINARY QUASAR IN A MAJOR MERGER. Astrophysical Journal, 2012, 744, 151.	4.5	16
92	FAINT COSMOS AGNs AT z â^1⁄4 3.3. I. BLACK HOLE PROPERTIES AND CONSTRAINTS ON EARLY BLACK HOLE GROWTH. Astrophysical Journal, 2016, 825, 4.	4.5	16
93	The impact of ionized outflows from <i>z</i> Ââ^¼ 2.5 quasars is not through instantaneous <i>in situ</i> quenching: the evidence from ALMA and VLT/SINFONI. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5469-5487.	4.4	16
94	The AGNIFS survey: distribution and excitation of the hot molecular and ionized gas in the inner kpc of nearby AGN hosts. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3265-3283.	4.4	15
95	The Close AGN Reference Survey (CARS). Astronomy and Astrophysics, 2022, 659, A125.	5.1	15
96	Fundamental differences in the properties of red and blue quasars: measuring the reddening and accretion properties with <i>X-shooter</i> . Monthly Notices of the Royal Astronomical Society, 2022, 513, 1254-1274.	4.4	15
97	THE RADIO JET INTERACTION IN NGC 5929: DIRECT DETECTION OF SHOCKED GAS. Astrophysical Journal Letters, 2010, 711, L94-L98.	8.3	14
98	SMBH accretion properties of radio-selected AGN out to zÂâ^1⁄4 4. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4971-4983.	4.4	14
99	Deep ugrizY imaging and DEEP2/3 spectroscopy: a photometric redshift testbed for LSST and public release of data from the DEEP3 Galaxy Redshift Survey. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4565-4584.	4.4	12
100	Fundamental differences in the radio properties of red and blue quasars: kiloparsec-scale structures revealed by e-MERLIN. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5283-5300.	4.4	12
101	Gemini NIFS survey of feeding and feedback processes in nearby active galaxies – VI. Stellar populations. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3906-3921.	4.4	12
102	Local AGN survey (LASr): I. Galaxy sample, infrared colour selection, and predictions for AGN within 100 Mpc. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1784-1816.	4.4	11
103	SUPER. Astronomy and Astrophysics, 2021, 654, A90.	5.1	10
104	BASS. XXIII. A New Mid-infrared Diagnostic for Absorption in Active Galactic Nuclei. Astrophysical Journal, Supplement Series, 2022, 261, 3.	7.7	10
105	SHINING LIGHT ON MERGING GALAXIES. I. THE ONGOING MERGER OF A QUASAR WITH A "GREEN VALLEY― GALAXY. Astrophysical Journal, 2011, 735, 54.	4.5	8
106	The star formation properties of the observed and simulated AGN Universe: BAT versus EAGLE. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2323-2338.	4.4	7
107	LLAMA: Stellar populations in the nuclei of ultra-hard X-ray-selected AGN and matched inactive galaxies. Astronomy and Astrophysics, 2021, 654, A132.	5.1	6
108	Stellar populations in local AGNs: evidence for enhanced star formation in the inner 100 pc. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4653-4668.	4.4	6

#	Article	IF	CITATIONS
109	The <i>NuSTAR</i> extragalactic survey of the <i>James Webb Space Telescope</i> North Ecliptic Pole time-domain field. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5176-5195.	4.4	5
110	Host Dark Matter Halos of SDSS Red and Blue Quasars: No Significant Difference in Large-scale Environment. Astrophysical Journal, 2022, 927, 16.	4.5	5
111	How Are Red and Blue Quasars Different? The Radio Properties. Galaxies, 2021, 9, 107.	3.0	4
112	The nature of sub-millimetre galaxies II: an ALMA comparison of SMG dust heating mechanisms. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4976-4991.	4.4	1
113	Space Project for Astrophysical and Cosmological Exploration (SPACE), an ESA stand-alone mission and a possible contribution to the Origins Space Telescope. Experimental Astronomy, 2021, 51, 625.	3.7	0