Rodrigo Manzanas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2395011/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling streamflow using multiple precipitation products in a topographically complex catchment. Modeling Earth Systems and Environment, 2022, 8, 1875-1885.	3.4	15
2	Changes in mean and extreme temperature and precipitation events from different weighted multi-model ensembles over the northern half of Morocco. Climate Dynamics, 2022, 58, 389-404.	3.8	11
3	Estimating changes in air pollutant levels due to COVID-19 lockdown measures based on a business-as-usual prediction scenario using data mining models: A case-study for urban traffic sites in Spain. Science of the Total Environment, 2022, 823, 153786.	8.0	20
4	Climate Trends and Extremes in the Indus River Basin, Pakistan: Implications for Agricultural Production. Atmosphere, 2022, 13, 378.	2.3	15
5	A Posteriori Random Forests for Stochastic Downscaling of Precipitation by Predicting Probability Distributions. Water Resources Research, 2022, 58, .	4.2	12
6	Extreme Precipitation on Consecutive Days Occurs More Often in a Warming Climate. Bulletin of the American Meteorological Society, 2022, 103, E1130-E1145.	3.3	26
7	On the suitability of deep convolutional neural networks for continental-wide downscaling of climate change projections. Climate Dynamics, 2021, 57, 2941-2951.	3.8	20
8	Impacts of Climate Change on the Hydrometeorological Characteristics of the Soan River Basin, Pakistan. Atmosphere, 2021, 12, 792.	2.3	12
9	Assessing the impact of climate change on wheat and sugarcane with the AquaCrop model along the Indus River Basin, Pakistan. Agricultural Water Management, 2021, 253, 106909.	5.6	13
10	Impacts of climate change on the streamflow of a large river basin in the Australian tropics using optimally selected climate model outputs. Journal of Cleaner Production, 2021, 315, 128091.	9.3	27
11	Statistical downscaling or bias adjustment? A case study involving implausible climate change projections of precipitation in Malawi. Climatic Change, 2020, 162, 1437-1453.	3.6	10
12	Configuration and intercomparison of deep learning neural models for statistical downscaling. Geoscientific Model Development, 2020, 13, 2109-2124.	3.6	89
13	Statistical downscaling with the downscaleR package (v3.1.0): contribution to the VALUE intercomparison experiment. Geoscientific Model Development, 2020, 13, 1711-1735.	3.6	40
14	How to create an operational multi-model of seasonal forecasts?. Climate Dynamics, 2020, 55, 1141-1157.	3.8	16
15	Statistical adjustment, calibration and downscaling of seasonal forecasts: a case-study for Southeast Asia. Climate Dynamics, 2020, 54, 2869-2882.	3.8	9
16	Assessing Multidomain Overlaps and Grand Ensemble Generation in CORDEX Regional Projections. Geophysical Research Letters, 2020, 47, e2019GL086799.	4.0	8
17	Assessment of Model Drifts in Seasonal Forecasting: Sensitivity to Ensemble Size and Implications for Bias Correction. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001751.	3.8	12
18	An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets. Earth System Science Data, 2020, 12, 2959-2970.	9.9	210

Rodrigo Manzanas

#	Article	IF	CITATIONS
19	Process-conditioned bias correction for seasonal forecasting: a case-study with ENSO in Peru. Climate Dynamics, 2019, 52, 1673-1683.	3.8	12
20	An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor crossâ€validation experiment. International Journal of Climatology, 2019, 39, 3750-3785.	3.5	164
21	The Weather Roulette: A Game to Communicate the Usefulness of Probabilistic Climate Predictions. Bulletin of the American Meteorological Society, 2019, 100, 1909-1921.	3.3	11
22	An Occupational Heat–Health Warning System for Europe: The HEAT-SHIELD Platform. International Journal of Environmental Research and Public Health, 2019, 16, 2890.	2.6	46
23	The METACLIP semantic provenance framework for climate products. Environmental Modelling and Software, 2019, 119, 445-457.	4.5	7
24	Subseasonal hydrometeorological ensemble predictions in small- and medium-sized mountainous catchments: benefits of the NWP approach. Hydrology and Earth System Sciences, 2019, 23, 493-513.	4.9	22
25	Bias adjustment and ensemble recalibration methods for seasonal forecasting: a comprehensive intercomparison using the C3S dataset. Climate Dynamics, 2019, 53, 1287-1305.	3.8	50
26	Precipitation From Persistent Extremes is Increasing in Most Regions and Globally. Geophysical Research Letters, 2019, 46, 6041-6049.	4.0	79
27	The R-based climate4R open framework for reproducible climate data access and post-processing. Environmental Modelling and Software, 2019, 111, 42-54.	4.5	81
28	Can bias correction and statistical downscaling methods improve the skill of seasonal precipitation forecasts?. Climate Dynamics, 2018, 50, 1161-1176.	3.8	45
29	Dynamical and statistical downscaling of seasonal temperature forecasts in Europe: Added value for user applications. Climate Services, 2018, 9, 44-56.	2.5	79
30	The land management tool: Developing a climate service in Southwest UK. Climate Services, 2018, 9, 86-100.	2.5	23
31	An R package to visualize and communicate uncertainty in seasonal climate prediction. Environmental Modelling and Software, 2018, 99, 101-110.	4.5	24
32	Dynamical and statistical downscaling of a global seasonal hindcast in eastern Africa. Climate Services, 2018, 9, 72-85.	2.5	36
33	The ECOMS User Data Gateway: Towards seasonal forecast data provision and research reproducibility in the era of Climate Services. Climate Services, 2018, 9, 33-43.	2.5	25
34	Reassessing Model Uncertainty for Regional Projections of Precipitation with an Ensemble of Statistical Downscaling Methods. Journal of Climate, 2017, 30, 203-223.	3.2	53
35	Assessing the suitability of statistical downscaling approaches for seasonal forecasting in Senegal. Atmospheric Science Letters, 2017, 18, 381-386.	1.9	3
36	Statistical Downscaling in the Tropics Can Be Sensitive to Reanalysis Choice: A Case Study for Precipitation in the Philippines. Journal of Climate, 2015, 28, 4171-4184.	3.2	38

Rodrigo Manzanas

#	Article	IF	CITATIONS
37	Precipitation variability and trends in Ghana: An intercomparison of observational and reanalysis products. Climatic Change, 2014, 124, 805-819.	3.6	75
38	Validation of 40 year multimodel seasonal precipitation forecasts: The role of ENSO on the global skill. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1708-1719.	3.3	49
39	Reassessing Statistical Downscaling Techniques for Their Robust Application under Climate Change Conditions. Journal of Climate, 2013, 26, 171-188.	3.2	145
40	Seasonal Predictability of Wintertime Precipitation in Europe Using the Snow Advance Index. Journal of Climate, 2012, 25, 4023-4028.	3.2	29
41	Modeling implications of climate induced streamflow changes on the fish species of the Soan River, Pakistan. Modeling Earth Systems and Environment, 0, , 1.	3.4	1