Tadashi Nishimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2394418/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Speech recognition scores in bilateral and unilateral atretic ears. International Journal of Audiology, 2022, 61, 663-669.	1.7	1
2	Bone and Cartilage Conduction. Audiology Research, 2022, 12, 77-78.	1.8	1
3	Factors Influencing the Purchase Rate of Cartilage Conduction Hearing Aids. Journal of the American Academy of Audiology, 2022, 33, 014-022.	0.7	6
4	Perception Mechanism of Bone-Conducted Ultrasound and Its Clinical Use. Audiology Research, 2021, 11, 244-253.	1.8	3
5	Cartilage Conduction Hearing Aid Fitting in Clinical Practice. Journal of the American Academy of Audiology, 2021, 32, 386-392.	0.7	15
6	Cartilage Conduction Hearing and Its Clinical Application. Audiology Research, 2021, 11, 254-262.	1.8	13
7	Benefits of Cartilage Conduction Hearing Aids for Speech Perception in Unilateral Aural Atresia. Audiology Research, 2021, 11, 284-290.	1.8	10
8	Long-term (16–26 years) follow-up outcome of steroid therapy in refractory autoimmune sensorineural hearing loss. Journal of Autoimmunity, 2021, 121, 102664.	6.5	4
9	Word Categorization of Vowel Durational Changes in Speech-Modulated Bone-Conducted Ultrasound. Audiology Research, 2021, 11, 357-364.	1.8	1
10	Vibrational and Acoustical Characteristics of Ear Pinna Simulators That Differ in Hardness. Audiology Research, 2021, 11, 327-334.	1.8	7
11	Clinical Trial for Cartilage Conduction Hearing Aid in Indonesia. Audiology Research, 2021, 11, 410-417.	1.8	9
12	Effect of transducer placements on thresholds in ears with an abnormal ear canal and severe conductive hearing loss. Laryngoscope Investigative Otolaryngology, 2021, 6, 1429-1435.	1.5	4
13	Effect of fixation place on airborne sound in cartilage conduction. Journal of the Acoustical Society of America, 2020, 148, 469-477.	1.1	8
14	Sound localisation ability using cartilage conduction hearing aids in bilateral aural atresia. International Journal of Audiology, 2020, 59, 891-896.	1.7	13
15	From the time of bone-conduction to cartilage-conduction. Audiology Japan, 2020, 63, 217-225.	0.1	1
16	Audiological evaluation of infants using mother's voice. International Journal of Pediatric Otorhinolaryngology, 2019, 121, 81-87.	1.0	2
17	Frequency characteristics and speech recognition in cartilage conduction. Auris Nasus Larynx, 2019, 46, 709-715.	1.2	10
18	Cartilage conduction as the third pathway for sound transmission. Auris Nasus Larynx, 2019, 46, 151-159	1.2	31

Tadashi Nishimura

#	Article	IF	CITATIONS
19	Information Sources Motivating the Use of Cartilage Conduction Hearing Aids. Journal of Otolaryngology of Japan, 2019, 122, 1522-1527.	0.1	1
20	Vestibular Compensation after Vestibular Dysfunction Induced by Arsanilic Acid in Mice. Brain Sciences, 2019, 9, 329.	2.3	7
21	Temporal window of integration estimated by omission in bone-conducted ultrasound. Neuroscience Letters, 2019, 696, 1-6.	2.1	5
22	Cartilage Conduction Hearing Aids for Severe Conduction Hearing Loss. Otology and Neurotology, 2018, 39, 65-72.	1.3	45
23	Disease statistics and abnormal clinical exam ratios for patients visiting a vertigo/dizziness center at Nara Medical University. Equilibrium Research, 2018, 77, 136-142.	0.1	0
24	Relationship between the timing of elimination of triggers and the length of time for hearing improvement in non-organic hearing loss. Audiology Japan, 2018, 61, 562-567.	0.1	0
25	Perception of speech in cartilage conduction. Auris Nasus Larynx, 2017, 44, 26-32.	1.2	12
26	Effects of noise exposure on neonatal auditory brainstem response thresholds in pregnant guinea pigs at different gestational periods. Journal of Obstetrics and Gynaecology Research, 2017, 43, 78-86.	1.3	2
27	Autocorrelation factors and intelligibility of Japanese monosyllables in individuals with sensorineural hearing loss. Journal of the Acoustical Society of America, 2017, 141, 1065-1073.	1.1	5
28	Self-assessment questionnaire for cartilage-conduction hearing aid. Audiology Japan, 2017, 60, 168-176.	0.1	0
29	An analysis of Staging-based Surgical Results in primary acquired cholesteatoma. Journal of Laryngology and Otology, 2016, 130, S227-S227.	0.8	0
30	Guidelines for the evaluation of hearing aid fitting (2010). Auris Nasus Larynx, 2016, 43, 217-228.	1.2	20
31	Cartilage Conduction Is Characterized by Vibrations of the Cartilaginous Portion of the Ear Canal. PLoS ONE, 2015, 10, e0120135.	2.5	51
32	Cartilage conduction efficiently generates airborne sound in the ear canal. Auris Nasus Larynx, 2015, 42, 15-19.	1.2	23
33	Simulating cartilage conduction sound to estimate the sound pressure level in the external auditory canal. Journal of Sound and Vibration, 2015, 335, 261-268.	3.9	15
34	An examination of the effects of broadband air-conduction masker onÂthe speech intelligibility of speech-modulated bone-conduction ultrasound. Hearing Research, 2014, 317, 41-49.	2.0	8
35	Sound transmission by cartilage conduction in ear with fibrotic aural atresia. Journal of Rehabilitation Research and Development, 2014, 51, 325-332.	1.6	33
36	Is cartilage conduction classified into air or bone conduction?. Laryngoscope, 2014, 124, 1214-1219.	2.0	48

Tadashi Nishimura

#	Article	IF	CITATIONS
37	Cartilage conduction hearing. Journal of the Acoustical Society of America, 2014, 135, 1959-1966.	1.1	44
38	Evaluation of speech intelligibility in short-reverberant sound fields. Auris Nasus Larynx, 2014, 41, 343-349.	1.2	1
39	Evaluation of prosodic and segmental change in speech-modulated bone-conducted ultrasound by mismatch fields. Neuroscience Letters, 2014, 559, 117-121.	2.1	5
40	Residual inhibition of tinnitus induced by 30-kHz bone-conducted ultrasound. Hearing Research, 2014, 310, 48-53.	2.0	8
41	Suppression of Subsequent N1m Amplitude When the Masker Frequency is Different from the Signal. Journal of Experimental Neuroscience, 2014, 8, JEN.S13507.	2.3	Ο
42	Human ultrasonic hearing is induced by a direct ultrasonic stimulation of the cochlea. Neuroscience Letters, 2013, 539, 71-76.	2.1	11
43	Benefit of a new hearing device utilizing cartilage conduction. Auris Nasus Larynx, 2013, 40, 440-446.	1.2	51
44	Development of monaural and binaural behind-the-ear cartilage conduction hearing aids. Applied Acoustics, 2013, 74, 1234-1240.	3.3	35
45	Speech intelligibility of hearing impaired participants in long-term training of bone-conducted ultrasonic hearing aid. Proceedings of Meetings on Acoustics, 2013, , .	0.3	1
46	Magnetoencephalographic Study on Forward Suppression by Ipsilateral, Contralateral, and Binaural Maskers. PLoS ONE, 2013, 8, e66225.	2.5	1
47	Advantages of cartilage sound conduction in hearing aids. , 2012, , .		2
48	Hearing aids reduce overestimation in pre-fitting self-assessment. Auris Nasus Larynx, 2012, 39, 156-162.	1.2	0
49	Duration-dependent growth of N1m for speech-modulated bone-conducted ultrasound. Neuroscience Letters, 2011, 495, 72-76.	2.1	6
50	Peripheral perception mechanism of ultrasonic hearing. Hearing Research, 2011, 277, 176-183.	2.0	22
51	The effect of visual information in speech signals by bone-conducted ultrasound. NeuroReport, 2010, 21, 119-122.	1.2	8
52	The measurement of auditory brainstem response (ABR) using cartilage conduction transducer in rats. The Proceedings of the Annual Convention of the Japanese Psychological Association, 2010, 74, 1PM074-1PM074.	0.0	0
53	N1m amplitude growth function for bone-conducted ultrasound. Acta Oto-Laryngologica, 2009, 129, 28-33.	0.9	8
54	Comparison between bone-conducted ultrasound and audible sound in speech recognition. Acta Oto-Laryngologica, 2009, 129, 34-39.	0.9	11

TADASHI NISHIMURA

#	Article	IF	CITATIONS
55	Progressive hearing loss in intracochlear schwannoma. European Archives of Oto-Rhino-Laryngology, 2008, 265, 489-492.	1.6	15
56	Assessment of ability to discriminate frequency of bone-conducted ultrasound by mismatch fields. Neuroscience Letters, 2008, 438, 260-262.	2.1	8
57	Effects of hearing aid on psychosocial reaction. Audiology Japan, 2007, 50, 52-60.	0.1	1
58	Effect of masker frequency on N1m amplitude in forward masking. Acta Oto-Laryngologica, 2004, 124, 33-35.	0.9	1
59	Digital versus analog hearing aid usefulness. Audiology Japan, 2004, 47, 119-125.	0.1	4
60	Ultrasonic masker clarifies ultrasonic perception in man. Hearing Research, 2003, 175, 171-177.	2.0	57
61	Effect of a forward masker on the N1m amplitude: varying the signal delay. NeuroReport, 2003, 14, 891-893.	1.2	6
62	Video-assisted Endoscopic Surgery for Parapharyngeal Tumor. Journal of Japan Society for Head and Neck Surgery, 2003, 13, 91-96.	0.0	0
63	Inner Head Acoustic Field for Bone-Conducted Sound Calculated by Finite-Difference Time-Domain Method. Japanese Journal of Applied Physics, 2002, 41, 3604-3608.	1.5	26
64	Effect of stimulus duration for bone-conducted ultrasound on N1m in man. Neuroscience Letters, 2002, 327, 119-122.	2.1	11
65	Effects of intravenous administration of prostaglandin E1 and lipo-prostaglandin E1 on cochlear blood flow in guinea pigs. European Archives of Oto-Rhino-Laryngology, 2002, 259, 253-256.	1.6	18