List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2394395/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biogenic Polyamines and Related Metabolites. Biomolecules, 2022, 12, 14.	4.0	2
2	Assessment of Diagnostic Specificity of Anti-SARS-CoV-2 Antibody Tests and Their Application for Monitoring of Seroconversion and Stability of Antiviral Antibody Response in Healthcare Workers in Moscow. Microorganisms, 2022, 10, 429.	3.6	2
3	Cultivation of Cells in a Physiological Plasmax Medium Increases Mitochondrial Respiratory Capacity and Reduces Replication Levels of RNA Viruses. Antioxidants, 2022, 11, 97.	5.1	20
4	Comparative study of magnetic beads and microplates as supports in heterogeneous amplified assay of miRNA-141 by using mismatched catalytic hairpin assembly reaction. Talanta, 2022, 247, 123535.	5.5	2
5	The immune response to the novel coronavirus infection. Journal of Clinical Practice, 2021, 12, 33-40.	0.6	2
6	Difluoromethylornithine (DFMO), an Inhibitor of Polyamine Biosynthesis, and Antioxidant N-Acetylcysteine Potentiate Immune Response in Mice to the Recombinant Hepatitis C Virus NS5B Protein. International Journal of Molecular Sciences, 2021, 22, 6892.	4.1	1
7	Peroxiredoxins—The Underrated Actors during Virus-Induced Oxidative Stress. Antioxidants, 2021, 10, 977.	5.1	16
8	Mesenchymal Stem Cells Can Both Enhance and Inhibit the Cellular Response to DNA Immunization by Genes of Nonstructural Proteins of the Hepatitis C Virus. International Journal of Molecular Sciences, 2021, 22, 8121.	4.1	3
9	Multiplex Assay of Viruses Integrating Recombinase Polymerase Amplification, Barcode—Anti-Barcode Pairs, Blocking Anti-Primers, and Lateral Flow Assay. Analytical Chemistry, 2021, 93, 13641-13650.	6.5	19
10	Discovery of a novel role of tumor suppressor PDCD4 in stimulation of translation termination. Journal of Biological Chemistry, 2021, 297, 101269.	3.4	4
11	Isolation of a panel of ultra-potent human antibodies neutralizing SARS-CoV-2 and viral variants of concern. Cell Discovery, 2021, 7, 96.	6.7	21
12	Recombinase Polymerase Amplification Assay with and without Nuclease-Dependent-Labeled Oligonucleotide Probe. International Journal of Molecular Sciences, 2021, 22, 11885.	4.1	9
13	The Potential Use of Isothermal Amplification Assays for In-Field Diagnostics of Plant Pathogens. Plants, 2021, 10, 2424.	3.5	20
14	Rapid Full-Cycle Technique to Control Adulteration of Meat Products: Integration of Accelerated Sample Preparation, Recombinase Polymerase Amplification, and Test-Strip Detection. Molecules, 2021, 26, 6804.	3.8	9
15	Microarray-Based Detection of Antibodies against SARS-CoV-2 Proteins, Common Respiratory Viruses and Type I Interferons. Viruses, 2021, 13, 2553.	3.3	15
16	Key significance of DNA-target size in lateral flow assay coupled with recombinase polymerase amplification. Analytica Chimica Acta, 2020, 1102, 109-118.	5.4	28
17	Nucleic acid lateral flow assay with recombinase polymerase amplification: Solutions for highly sensitive detection of RNA virus. Talanta, 2020, 210, 120616.	5.5	46
18	Metabolic Hallmarks of Hepatic Stellate Cells in Liver Fibrosis. Cells, 2020, 9, 24.	4.1	116

#	Article	IF	CITATIONS
19	The Challenge for Rapid Detection of High-Structured Circular RNA: Assay of Potato Spindle Tuber Viroid Based on Recombinase Polymerase Amplification and Lateral Flow Tests. Plants, 2020, 9, 1369.	3.5	10
20	Development of lateral flow assay combined with recombinase polymerase amplification for highly sensitive detection of Dickeya solani. Molecular and Cellular Probes, 2020, 53, 101622.	2.1	14
21	Virion-Associated Polyamines Transmit with Bunyaviruses to Maintain Infectivity and Promote Entry. ACS Infectious Diseases, 2020, 6, 2490-2501.	3.8	14
22	SARS-CoV-2 Epitopes Are Recognized by a Public and Diverse Repertoire of Human T Cell Receptors. Immunity, 2020, 53, 1245-1257.e5.	14.3	194
23	Expression of the Reverse Transcriptase Domain of Telomerase Reverse Transcriptase Induces Lytic Cellular Response in DNA-Immunized Mice and Limits Tumorigenic and Metastatic Potential of Murine Adenocarcinoma 4T1 Cells. Vaccines, 2020, 8, 318.	4.4	2
24	Redox Biology of Infection and Consequent Disease. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-4.	4.0	6
25	DEAD-box RNA Helicase DDX3: Functional Properties and Development of DDX3 Inhibitors as Antiviral and Anticancer Drugs. Molecules, 2020, 25, 1015.	3.8	54
26	Genetically Modified Mouse Mesenchymal Stem Cells Expressing Non-Structural Proteins of Hepatitis C Virus Induce Effective Immune Response. Vaccines, 2020, 8, 62.	4.4	13
27	Recombinase polymerase amplification combined with a magnetic nanoparticle-based immunoassay for fluorometric determination of troponin T. Mikrochimica Acta, 2019, 186, 549.	5.0	13
28	Hepatitis C Virus RNA-Dependent RNA Polymerase Is Regulated by Cysteine S-Glutathionylation. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-11.	4.0	7
29	Polyadenylate-binding protein–interacting proteins PAIP1 and PAIP2 affect translation termination. Journal of Biological Chemistry, 2019, 294, 8630-8639.	3.4	25
30	The Immunogenicity in Mice of HCV Core Delivered as DNA Is Modulated by Its Capacity to Induce Oxidative Stress and Oxidative Stress Response. Cells, 2019, 8, 208.	4.1	4
31	HIV-1 Reverse Transcriptase Promotes Tumor Growth and Metastasis Formation via ROS-Dependent Upregulation of Twist. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-28.	4.0	21
32	Inhibitor of polyamine catabolism MDL72.527 restores the sensitivity to doxorubicin of monocytic leukemia Thp-1 cells infected with human cytomegalovirus. Biochimie, 2019, 158, 82-89.	2.6	6
33	Eukaryotic translation elongation factor 2 (eEF2) catalyzes reverse translocation of the eukaryotic ribosome. Journal of Biological Chemistry, 2018, 293, 5220-5229.	3.4	25
34	Activation of Polyamine Catabolism by N1,N11-Diethylnorspermine in Hepatic HepaRG Cells Induces Dedifferentiation and Mesenchymal-Like Phenotype. Cells, 2018, 7, 275.	4.1	13
35	Oxidative Stress in Hepatitis C Infection. , 2018, , 1-13.		2
36	Redox Biology of Respiratory Viral Infections. Viruses, 2018, 10, 392.	3.3	290

#	Article	IF	CITATIONS
37	Polyamine Metabolism and Oxidative Protein Folding in the ER as ROS-Producing Systems Neglected in Virology. International Journal of Molecular Sciences, 2018, 19, 1219.	4.1	26
38	Hepatitis C virus alters metabolism of biogenic polyamines by affecting expression of key enzymes of their metabolism. Biochemical and Biophysical Research Communications, 2017, 483, 904-909.	2.1	24
39	RNA helicase DDX19 stabilizes ribosomal elongation and termination complexes. Nucleic Acids Research, 2017, 45, 1307-1318.	14.5	42
40	Oxidative Stress in Infection and Consequent Disease. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-3.	4.0	107
41	Fusion to Flaviviral Leader Peptide Targets HIV-1 Reverse Transcriptase for Secretion and Reduces Its Enzymatic Activity and Ability to Induce Oxidative Stress but Has No Major Effects on Its Immunogenic Performance in DNA-Immunized Mice. Journal of Immunology Research, 2017, 2017, 1-16.	2.2	7
42	Modulation of Cell Death Pathways by Hepatitis C Virus Proteins in Huh7.5 Hepatoma Cells. International Journal of Molecular Sciences, 2017, 18, 2346.	4.1	11
43	Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis. Oncotarget, 2017, 8, 3895-3932.	1.8	126
44	Hepatitis C Virus NS5A Protein Triggers Oxidative Stress by Inducing NADPH Oxidases 1 and 4 and Cytochrome P450 2E1. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10.	4.0	46
45	Oxidative Stress during HIV Infection: Mechanisms and Consequences. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-18.	4.0	248
46	Prokaryotic Expression, Purification and Immunogenicity in Rabbits of the Small Antigen of Hepatitis Delta Virus. International Journal of Molecular Sciences, 2016, 17, 1721.	4.1	2
47	Novel 5-alkyl(aryl)-substituted ribavirine analogues: synthesis and antiviral evaluation. Mendeleev Communications, 2016, 26, 214-216.	1.6	16
48	Nonstructural Protein 1 of Tick-Borne Encephalitis Virus Induces Oxidative Stress and Activates Antioxidant Defense by the Nrf2/ARE Pathway. Intervirology, 2016, 59, 111-117.	2.8	29
49	PABP enhances release factor recruitment and stop codon recognition during translation termination. Nucleic Acids Research, 2016, 44, 7766-7776.	14.5	99
50	Exploration of acetanilide derivatives of 1-(ω-phenoxyalkyl)uracils as novel inhibitors of Hepatitis C Virus replication. Scientific Reports, 2016, 6, 29487.	3.3	15
51	Glutathione peroxidase 4 is reversibly induced by HCV to control lipid peroxidation and to increase virion infectivity. Gut, 2016, 65, 144-154.	12.1	45
52	Synthesis and evaluation of novel lipopeptide as a vehicle for efficient gene delivery and gene silencing. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 102, 159-167.	4.3	18
53	HCV Core Protein Uses Multiple Mechanisms to Induce Oxidative Stress in Human Hepatoma Huh7 Cells. Viruses, 2015, 7, 2745-2770.	3.3	71
54	Scaffold hopping: Exploration of acetanilide-containing uracil analogues as potential NNRTIs. Bioorganic and Medicinal Chemistry, 2015, 23, 1069-1081.	3.0	14

#	Article	IF	CITATIONS
55	Stabilization of eukaryotic ribosomal termination complexes by deacylated tRNA. Nucleic Acids Research, 2015, 43, 3332-3343.	14.5	15
56	Enhancement of the immune response by codelivery of hepatitis C virus recombinant DNA and proteins of the replicative complex. Molecular Genetics, Microbiology and Virology, 2015, 30, 39-47.	0.3	1
57	Synthesis and studies of new 6-[halo(diphenyl)methyl]- and 6-(thiophen-2-ylmethyl)pyrimidin-4(3H)-ones as possible HIV-1 reverse transcriptase inhibitors. Russian Chemical Bulletin, 2013, 62, 797-801.	1.5	Ο
58	Synthesis and Anti-HIV-1 Activity of 1-[ï‰-(Phenoxy)Alkyl and -Alkenyl]Uracil Derivatives. Pharmaceutical Chemistry Journal, 2013, 47, 459-463.	0.8	3
59	N1,N3-disubstituted uracils as nonnucleoside inhibitors of HIV-1 reverse transcriptase. Bioorganic and Medicinal Chemistry, 2013, 21, 1150-1158.	3.0	28
60	5′-Nor carbocyclic nucleosides: unusual nonnucleoside inhibitors of HIV-1 reverse transcriptase. MedChemComm, 2013, 4, 741.	3.4	10
61	HCV and Oxidative Stress in the Liver. Viruses, 2013, 5, 439-469.	3.3	175
62	Oxidative stress induced by HIV-1 reverse transcriptase modulates the enzyme's performance in gene immunization. Human Vaccines and Immunotherapeutics, 2013, 9, 2111-2119.	3.3	41
63	Benzophenone derivatives of pyrimidines as effective non-nucleoside inhibitors of wild-type and drug-resistant HIV-1 reverse transcriptase. Doklady Biochemistry and Biophysics, 2012, 447, 280-281.	0.9	3
64	Biogenic polyamines spermine and spermidine activate RNA polymerase and inhibit RNA helicase of hepatitis C virus. Biochemistry (Moscow), 2012, 77, 1172-1180.	1.5	13
65	Chemically induced oxidative stress increases polyamine levels by activating the transcription of ornithine decarboxylase and spermidine/spermine-N1-acetyltransferase in human hepatoma HUH7 cells. Biochimie, 2012, 94, 1876-1883.	2.6	49
66	Hepatitis C Virus Proteins Activate NRF2/ARE Pathway by Distinct ROS-Dependent and Independent Mechanisms in HUH7 Cells. PLoS ONE, 2011, 6, e24957.	2.5	138
67	1-[2-(2-Benzoyl- and 2-benzylphenoxy)ethyl]uracils as potent anti-HIV-1 agents. Bioorganic and Medicinal Chemistry, 2011, 19, 5794-5802.	3.0	37
68	Inhibition of the helicase activity of the HCV NS3 protein by symmetrical dimeric bis-benzimidazoles. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5331-5335.	2.2	17
69	1-Benzyl derivatives of 5-(arylamino)uracils as anti-HIV-1 and anti-EBV agents. Bioorganic and Medicinal Chemistry, 2010, 18, 8310-8314.	3.0	19
70	Antiviral Properties, Metabolism, and Pharmacokinetics of a Novel Azolo-1,2,4-Triazine-Derived Inhibitor of Influenza A and B Virus Replication. Antimicrobial Agents and Chemotherapy, 2010, 54, 2017-2022.	3.2	64
71	The successful immune response against hepatitis C nonstructural protein 5A (NS5A) requires heterologous DNA/protein immunization. Vaccine, 2010, 28, 1987-1996.	3.8	13
72	Potent cross-reactive immune response against the wild-type and drug-resistant forms of HIV reverse transcriptase after the chimeric gene immunization. Vaccine, 2010, 28, 1975-1986.	3.8	12

#	Article	IF	CITATIONS
73	Hepatitis C virus NS5A protein modulates template selection by the RNA polymerase in in vitro system. FEBS Letters, 2009, 583, 277-280.	2.8	9
74	Hepatitis C virus helicase/NTPase: an efficient expression system and new inhibitors. Biochemistry (Moscow), 2008, 73, 660-668.	1.5	10
75	Synthesis of Novel Alkyl Triphosphates and Their Substrate Properties Toward Terminal Deoxynucleotidyltransferase. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 323-334.	1.1	1
76	Development of the system ensuring a high-level expression of hepatitis C virus nonstructural NS5B and NS5A proteins. Protein Expression and Purification, 2006, 48, 14-23.	1.3	53
77	Hepatitis C virus RNA-dependent RNA polymerase: Study on the inhibition mechanism by pyrogallol derivatives. Biochemistry (Moscow), 2006, 71, 1021-1026.	1.5	4
78	Structural—Functional Relationships between Terminal Deoxynucleotidyltransferase and 5′-Triphosphates of Nucleoside Analogs. Biochemistry (Moscow), 2005, 70, 890-896.	1.5	1
79	Hypophosphoric acid is a unique substrate of pyrophosphorolysis catalyzed by HIV-1 reverse transcriptase. Biochemical and Biophysical Research Communications, 2005, 338, 1335-1341.	2.1	10
80	New Non-nucleoside Inhibitors of Hepatitis C Virus RNA-Dependent RNA Polymerase. Biochemistry (Moscow), 2004, 69, 782-788.	1.5	5
81	The Synthesis and Antiherpetic Activity of Acyclovir Phosphonate Esters. Russian Journal of Bioorganic Chemistry, 2004, 30, 539-546.	1.0	2
82	Uncharged AZT and D4T Derivatives of Phosphonoformic and Phosphonoacetic Acids as Anti-HIV Pronucleosides. Journal of Medicinal Chemistry, 2004, 47, 3606-3614.	6.4	27
83	Synthesis and Antiherpetic Activity of Acyclovir Phosphonates. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 319-328.	1.1	11
84	SAFETY AND EFFICACY OF CONVALESCENT PLASMA FOR COVID-19: THE FIRST RESULTS OF A CLINICAL STUDY. Journal of Clinical Practice, 0, , .	0.6	4