Chen-Ho Tung

List of Publications by Citations

Source: https://exaly.com/author-pdf/2394364/chen-ho-tung-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26,608 83 504 143 h-index g-index citations papers 31,851 7.54 549 9.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
504	Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution. <i>Advanced Materials</i> , 2017 , 29, 1605148	3 ²⁴	951
503	Design strategies of fluorescent probes for selective detection among biothiols. <i>Chemical Society Reviews</i> , 2015 , 44, 6143-60	58.5	587
502	Nitrogen-Doped Porous Carbon Nanosheets Templated from g-C3 N4 as Metal-Free Electrocatalysts for Efficient Oxygen Reduction Reaction. <i>Advanced Materials</i> , 2016 , 28, 5080-6	24	573
501	Well-Dispersed ZIF-Derived Co,N-Co-doped Carbon Nanoframes through Mesoporous-Silica-Protected Calcination as Efficient Oxygen Reduction Electrocatalysts. <i>Advanced Materials</i> , 2016 , 28, 1668-74	24	558
500	Ni3FeN Nanoparticles Derived from Ultrathin NiFe-Layered Double Hydroxide Nanosheets: An Efficient Overall Water Splitting Electrocatalyst. <i>Advanced Energy Materials</i> , 2016 , 6, 1502585	21.8	522
499	Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3344	13	510
498	Smart Utilization of Carbon Dots in Semiconductor Photocatalysis. <i>Advanced Materials</i> , 2016 , 28, 9454-9	94747	483
497	Tuning Oxygen Vacancies in Ultrathin TiO Nanosheets to Boost Photocatalytic Nitrogen Fixation up to 700 nm. <i>Advanced Materials</i> , 2019 , 31, e1806482	24	452
496	Ultrafine NiO Nanosheets Stabilized by TiO2 from Monolayer NiTi-LDH Precursors: An Active Water Oxidation Electrocatalyst. <i>Journal of the American Chemical Society</i> , 2016 , 138, 6517-24	16.4	452
495	Defect-Rich Ultrathin ZnAl-Layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO2 to CO with Water. <i>Advanced Materials</i> , 2015 , 27, 7824-31	24	445
494	Layered-Double-Hydroxide Nanosheets as Efficient Visible-Light-Driven Photocatalysts for Dinitrogen Fixation. <i>Advanced Materials</i> , 2017 , 29, 1703828	24	342
493	Enhanced Driving Force and Charge Separation Efficiency of Protonated g-C3N4 for Photocatalytic O2 Evolution. <i>ACS Catalysis</i> , 2015 , 5, 6973-6979	13.1	333
492	Biological Applications of Supramolecular Assemblies Designed for Excitation Energy Transfer. <i>Chemical Reviews</i> , 2015 , 115, 7502-42	68.1	307
491	Layered Double Hydroxide Nanostructured Photocatalysts for Renewable Energy Production. <i>Advanced Energy Materials</i> , 2016 , 6, 1501974	21.8	289
490	NiFe Layered Double Hydroxide Nanoparticles on Co,N-Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable ZincAir Batteries. <i>Advanced Energy Materials</i> , 2017 , 7, 1700467	21.8	280
489	Photoelectrochemically Active and Environmentally Stable CsPbBr3/TiO2 Core/Shell Nanocrystals. <i>Advanced Functional Materials</i> , 2018 , 28, 1704288	15.6	280
488	Self-Assembled Au/CdSe Nanocrystal Clusters for Plasmon-Mediated Photocatalytic Hydrogen Evolution. <i>Advanced Materials</i> , 2017 , 29, 1700803	24	258

487	Graphdiyne: A Metal-Free Material as Hole Transfer Layer To Fabricate Quantum Dot-Sensitized Photocathodes for Hydrogen Production. <i>Journal of the American Chemical Society</i> , 2016 , 138, 3954-7	16.4	257
486	Two-dimensional-related catalytic materials for solar-driven conversion of CO into valuable chemical feedstocks. <i>Chemical Society Reviews</i> , 2019 , 48, 1972-2010	58.5	233
485	Reactivity and mechanistic insight into visible-light-induced aerobic cross-dehydrogenative coupling reaction by organophotocatalysts. <i>Chemistry - A European Journal</i> , 2012 , 18, 620-7	4.8	232
484	A superior fluorescent sensor for Al3+ and UO22+ based on a Co(II) metalBrganic framework with exposed pyrimidyl Lewis base sites. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 13079-13085	13	221
483	Photocatalytic hydrogen production from hantzsch 1,4-dihydropyridines by platinum(II) terpyridyl complexes in homogeneous solution. <i>Journal of the American Chemical Society</i> , 2004 , 126, 3440-1	16.4	213
482	A cascade cross-coupling hydrogen evolution reaction by visible light catalysis. <i>Journal of the American Chemical Society</i> , 2013 , 135, 19052-5	16.4	211
481	Semiconducting quantum dots for artificial photosynthesis. <i>Nature Reviews Chemistry</i> , 2018 , 2, 160-173	34.6	209
480	Alumina-Supported CoFe Alloy Catalysts Derived from Layered-Double-Hydroxide Nanosheets for Efficient Photothermal CO Hydrogenation to Hydrocarbons. <i>Advanced Materials</i> , 2018 , 30, 1704663	24	208
479	Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly. <i>Accounts of Chemical Research</i> , 2014 , 47, 2177-85	24.3	202
478	Photocatalytic Hydrogen-Evolution Cross-Couplings: Benzene C-H Amination and Hydroxylation. Journal of the American Chemical Society, 2016 , 138, 10080-3	16.4	198
477	CdS Nanoparticle-Decorated Cd Nanosheets for Efficient Visible Light-Driven Photocatalytic Hydrogen Evolution. <i>Advanced Energy Materials</i> , 2016 , 6, 1501241	21.8	193
476	Sub-3 nm Ultrafine Monolayer Layered Double Hydroxide Nanosheets for Electrochemical Water Oxidation. <i>Advanced Energy Materials</i> , 2018 , 8, 1703585	21.8	190
475	Supramolecular systems as microreactors: control of product selectivity in organic phototransformation. <i>Accounts of Chemical Research</i> , 2003 , 36, 39-47	24.3	183
474	Long-lived emission from platinum(II) terpyridyl acetylide complexes. <i>Inorganic Chemistry</i> , 2002 , 41, 565	3 5. 5	182
473	From Solar Energy to Fuels: Recent Advances in Light-Driven C Chemistry. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 17528-17551	16.4	181
472	Semiconductor Quantum Dots: An Emerging Candidate for CO Photoreduction. <i>Advanced Materials</i> , 2019 , 31, e1900709	24	177
471	Photoresponsive hydrogen-bonded supramolecular polymers based on a stiff stilbene unit. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 9738-42	16.4	177
470	Visible-Light-Promoted Asymmetric Cross-Dehydrogenative Coupling of Tertiary Amines to Ketones by Synergistic Multiple Catalysis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 3694-369	98 ^{6.4}	163

469	Pure Organic Room Temperature Phosphorescence from Excited Dimers in Self-Assembled Nanoparticles under Visible and Near-Infrared Irradiation in Water. <i>Journal of the American Chemical Society</i> , 2019 , 141, 5045-5050	16.4	161
468	Artificial Photosynthetic Systems Based on [FeFe]-Hydrogenase Mimics: the Road to High Efficiency for Light-Driven Hydrogen Evolution. <i>ACS Catalysis</i> , 2012 , 2, 407-416	13.1	160
467	Mechanistic insights into the interface-directed transformation of thiols into disulfides and molecular hydrogen by visible-light irradiation of quantum dots. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 2085-9	16.4	159
466	Oxide-Modified Nickel Photocatalysts for the Production of Hydrocarbons in Visible Light. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 4215-9	16.4	157
465	Copper(I)-Catalyzed Interrupted Click Reaction: Synthesis of Diverse 5-Hetero-Functionalized Triazoles. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 649-53	16.4	153
464	Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production. <i>Nano Research</i> , 2018 , 11, 3462-3468	10	149
463	Facile synthesis of hierarchical ZnIn2S4 submicrospheres composed of ultrathin mesoporous nanosheets as a highly efficient visible-light-driven photocatalyst for H2 production. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4552	13	149
462	Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase. <i>Nature Communications</i> , 2013 , 4, 2695	17.4	144
461	Highly luminescent nitrogen-doped carbon quantum dots as effective fluorescent probes for mercuric and iodide ions. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 1922-1928	7.1	144
460	Assembly of silver Trigons into a buckyball-like Ag nanocage. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 12132-12137	11.5	143
459	Highly efficient and selective photocatalytic hydrogenation of functionalized nitrobenzenes. <i>Green Chemistry</i> , 2014 , 16, 1082-1086	10	140
458	BODIPY-based fluorometric sensor for the simultaneous determination of Cys, Hcy, and GSH in human serum. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 5907-14	9.5	137
457	Cross-coupling hydrogen evolution reaction in homogeneous solution without noble metals. <i>Organic Letters</i> , 2014 , 16, 1988-91	6.2	132
456	Anisotropic Assembly of Ag and Ag Nanoclusters. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1600-1603	16.4	130
455	Photocatalytic Activation of Less Reactive Bonds and Their Functionalization via Hydrogen-Evolution Cross-Couplings. <i>Accounts of Chemical Research</i> , 2018 , 51, 2512-2523	24.3	127
454	Visible Light Catalysis Assisted Site-Specific Functionalization of Amino Acid Derivatives by CH Bond Activation without Oxidant: Cross-Coupling Hydrogen Evolution Reaction. <i>ACS Catalysis</i> , 2015 , 5, 2391-2396	13.1	126
453	A highly efficient and selective aerobic cross-dehydrogenative-coupling reaction photocatalyzed by a platinum(II) terpyridyl complex. <i>Chemistry - A European Journal</i> , 2013 , 19, 6443-50	4.8	126
452	A luminescent chemosensor with specific response for Mg2+. <i>Inorganic Chemistry</i> , 2004 , 43, 5195-7	5.1	122

451	Self-Assembled Framework Enhances Electronic Communication of Ultrasmall-Sized Nanoparticles for Exceptional Solar Hydrogen Evolution. <i>Journal of the American Chemical Society</i> , 2017 , 139, 4789-47	79 ^{16.4}	121
450	Graphene-Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions. <i>Angewandte Chemie</i> , 2014 , 126, 254-258	3.6	118
449	Graphdiyne: A Promising CatalystBupport To Stabilize Cobalt Nanoparticles for Oxygen Evolution. <i>ACS Catalysis</i> , 2017 , 7, 5209-5213	13.1	116
448	An exceptional artificial photocatalyst, Nih -CdSe/CdS core/shell hybrid, made in situ from CdSe quantum dots and nickel salts for efficient hydrogen evolution. <i>Advanced Materials</i> , 2013 , 25, 6613-8	24	116
447	Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance. <i>Nano Research</i> , 2019 , 12, 2385-2389	10	115
446	Artificial light-harvesting system based on multifunctional surface-cross-linked micelles. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 2088-92	16.4	115
445	Light-Harvesting Systems Based on Organic Nanocrystals To Mimic Chlorosomes. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2759-63	16.4	115
444	Water-Soluble Pentagonal-Prismatic Titanium-Oxo Clusters. <i>Journal of the American Chemical Society</i> , 2016 , 138, 11097-100	16.4	112
443	A robust <code>Brtificial</code> catalystlin situ formed from CdTe QDs and inorganic cobalt salts for photocatalytic hydrogen evolution. <i>Energy and Environmental Science</i> , 2013 , 6, 465-469	35.4	111
442	Photocatalysis with Quantum Dots and Visible Light: Selective and Efficient Oxidation of Alcohols to Carbonyl Compounds through a Radical Relay Process in Water. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 3020-3024	16.4	110
441	Dual gold and photoredox catalysis: visible light-mediated intermolecular atom transfer thiosulfonylation of alkenes. <i>Chemical Science</i> , 2017 , 8, 2610-2615	9.4	110
440	Cobalt-catalyzed cross-dehydrogenative coupling reaction in water by visible light. <i>Organic Letters</i> , 2015 , 17, 884-7	6.2	110
439	Photoinduced transformations of stiff-stilbene-based discrete metallacycles to metallosupramolecular polymers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 8717-22	11.5	110
438	Interface-directed assembly of a simple precursor of [FeFe] H2ase mimics on CdSe QDs for photosynthetic hydrogen evolution in water. <i>Energy and Environmental Science</i> , 2013 , 6, 2597	35.4	108
437	Spontaneous organization of inorganic nanoparticles into nanovesicles triggered by UV light. <i>Advanced Materials</i> , 2014 , 26, 5613-8	24	104
436	Efficient and Selective CO2 Reduction Integrated with Organic Synthesis by Solar Energy. <i>CheM</i> , 2019 , 5, 2605-2616	16.2	102
435	[Ag(C?C Bu)(CrO)]: An Atomically Precise Silver Nanocluster Co-protected by Inorganic and Organic Ligands. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4460-4467	16.4	101
434	Visible-light induced oxidant-free oxidative cross-coupling for constructing allylic sulfones from olefins and sulfinic acids. <i>Chemical Communications</i> , 2016 , 52, 10407-10	5.8	100

433	Trapping an octahedral Ag kernel in a seven-fold symmetric Ag nanowheel. <i>Nature Communications</i> , 2018 , 9, 2094	17.4	100
432	Switching between ligand-to-ligand charge-transfer, intraligand charge-transfer, and metal-to-ligand charge-transfer excited states in platinum(II) terpyridyl acetylide complexes induced by pH change and metal ions. <i>Chemistry - A European Journal</i> , 2007 , 13, 1231-9	4.8	97
431	Beyond Clusters: Supramolecular Networks Self-Assembled from Nanosized Silver Clusters and Inorganic Anions. <i>Chemistry - A European Journal</i> , 2016 , 22, 6830-6	4.8	95
430	Regioselective synthesis of multisubstituted 1,2,3-triazoles: moving beyond the copper-catalyzed azide-alkyne cycloaddition. <i>Chemical Communications</i> , 2016 , 52, 14188-14199	5.8	94
429	Solvent-Controlled Phase Transition of a Co -Organic Framework: From Achiral to Chiral and Two to Three Dimensions. <i>Chemistry - A European Journal</i> , 2017 , 23, 7990-7996	4.8	93
428	Co-Based Catalysts Derived from Layered-Double-Hydroxide Nanosheets for the Photothermal Production of Light Olefins. <i>Advanced Materials</i> , 2018 , 30, e1800527	24	92
427	Water-dispersible nanospheres of hydrogen-bonded supramolecular polymers and their application for mimicking light-harvesting systems. <i>Chemical Communications</i> , 2014 , 50, 1334-7	5.8	92
426	Different Silver Nanoparticles in One Crystal: Ag (PrPhS) (Ph P) Cl and Ag (PrPhS) (Ph P) Cl. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 195-199	16.4	91
425	Gold carbene chemistry from diazo compounds. <i>Science Bulletin</i> , 2015 , 60, 1479-1492	10.6	90
424	A near-infrared fluorescent sensor for selective detection of cysteine and its application in live cell imaging. <i>RSC Advances</i> , 2014 , 4, 8360	3.7	90
423	General and Efficient Intermolecular [2+2] Photodimerization of Chalcones and Cinnamic Acid Derivatives in Solution through Visible-Light Catalysis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 15407-15410	16.4	84
422	Controllable Synthesis of Ultrathin Transition-Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2167-70	16.4	83
421	Efficient Photocatalytic Nitrogen Fixation over Cu\(\mathbb{H}\)-Modified Defective ZnAl-Layered Double Hydroxide Nanosheets. <i>Advanced Energy Materials</i> , 2020 , 10, 1901973	21.8	82
420	Core-Shell {Mn?(Mn,Cd)} Assembled from Core {Mn} Disc. <i>Journal of the American Chemical Society</i> , 2017 , 139, 14033-14036	16.4	82
419	Three-Dimensional Graphene Networks with Abundant Sharp Edge Sites for Efficient Electrocatalytic Hydrogen Evolution. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 192-197	16.4	82
418	An Oxidant-Free Strategy for Indole Synthesis via Intramolecular CII Bond Construction under Visible Light Irradiation: Cross-Coupling Hydrogen Evolution Reaction. <i>ACS Catalysis</i> , 2016 , 6, 4635-463	9 ^{13.1}	81
417	Activation of C?H Bonds through Oxidant-Free Photoredox Catalysis: Cross-Coupling Hydrogen-Evolution Transformation of Isochromans and Keto Esters. <i>Chemistry - A European Journal</i> , 2015 , 21, 18080-4	4.8	8o
416	Supramolecular Polymeric Fluorescent Nanoparticles Based on Quadruple Hydrogen Bonds. <i>Advanced Functional Materials</i> , 2016 , 26, 5483-5489	15.6	79

(2003-2018)

415	Deciphering synergetic core-shell transformation from [MoO@Ag] to [MoO@Ag]. <i>Nature Communications</i> , 2018 , 9, 4407	17.4	77	
414	A solution-processed, mercaptoacetic acid-engineered CdSe quantum dot photocathode for efficient hydrogen production under visible light irradiation. <i>Energy and Environmental Science</i> , 2015 , 8, 1443-1449	35.4	76	
413	Combining Visible Light Catalysis and Transition Metal Catalysis for the Alkylation of Secondary Amines. <i>Advanced Synthesis and Catalysis</i> , 2013 , 355, 2158-2164	5.6	74	
412	Improved Photoelectrocatalytic Performance for Water Oxidation by Earth-Abundant Cobalt Molecular Porphyrin Complex-Integrated BiVO4 Photoanode. <i>ACS Applied Materials &</i> Interfaces, 2016 , 8, 18577-83	9.5	72	
411	Maked Magnetically Recyclable Mesoporous Au Fe2O3 Nanocrystal Clusters: A Highly Integrated Catalyst System. <i>Advanced Functional Materials</i> , 2017 , 27, 1606215	15.6	71	
410	Reductive Transformation of Layered-Double-Hydroxide Nanosheets to Fe-Based Heterostructures for Efficient Visible-Light Photocatalytic Hydrogenation of CO. <i>Advanced Materials</i> , 2018 , 30, e1803127	24	70	
409	Versatile photosensitization system for 1O2-mediated oxidation of alkenes based on nafion-supported platinum(II) terpyridyl acetylide complex. <i>Organic Letters</i> , 2003 , 5, 3221-4	6.2	70	
408	Synthesis of Oligoparaphenylene-Derived Nanohoops Employing an Anthracene Photodimerization-Cycloreversion Strategy. <i>Journal of the American Chemical Society</i> , 2016 , 138, 11144	- 7 6.4	69	
407	Metallic Co2C: A Promising Co-catalyst To Boost Photocatalytic Hydrogen Evolution of Colloidal Quantum Dots. <i>ACS Catalysis</i> , 2018 , 8, 5890-5895	13.1	69	
406	Superhydrophilic Graphdiyne Accelerates Interfacial Mass/Electron Transportation to Boost Electrocatalytic and Photoelectrocatalytic Water Oxidation Activity. <i>Advanced Functional Materials</i> , 2019 , 29, 1808079	15.6	68	
405	Cu/Pd-Catalyzed, Three-Component Click Reaction of Azide, Alkyne, and Aryl Halide: One-Pot Strategy toward Trisubstituted Triazoles. <i>Organic Letters</i> , 2015 , 17, 2860-3	6.2	67	
404	Aggregation behavior of a chiral long-chain ionic liquid in aqueous solution. <i>Journal of Colloid and Interface Science</i> , 2010 , 343, 94-101	9.3	67	
403	Visible light catalysis-assisted assembly of Ni(h)-QD hollow nanospheres in situ via hydrogen bubbles. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8261-8	16.4	65	
402	Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications. <i>Energy and Environmental Science</i> , 2020 , 13, 1326-1346	35.4	65	
401	Quantum Dot Assembly for Light-Driven Multielectron Redox Reactions, such as Hydrogen Evolution and CO Reduction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 10804-10811	16.4	64	
400	Direct synthesis of all-inorganic heterostructured CdSe/CdS QDs in aqueous solution for improved photocatalytic hydrogen generation. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10365-10373	13	63	
399	Iron-Catalyzed 1,2-Selective Hydroboration of N-Heteroarenes. <i>Journal of the American Chemical Society</i> , 2017 , 139, 17775-17778	16.4	63	
398	Reverse saturable absorption of platinum ter/bipyridyl polyphenylacetylide complexes. <i>Applied Physics Letters</i> , 2003 , 82, 850-852	3.4	63	

397	Shape-controlled synthesis of polyhedral 50-facet Cu2O microcrystals with high-index facets. CrystEngComm, 2012, 14, 4431	3.3	62
396	Synthesis of Spiroketals by Synergistic Gold and Scandium Catalysis. <i>Organic Letters</i> , 2017 , 19, 2526-252	2% .2	61
395	BODIPY-based fluorescent probe for the simultaneous detection of glutathione and cysteine/homocysteine at different excitation wavelengths. <i>RSC Advances</i> , 2015 , 5, 3959-3964	3.7	61
394	Gold-doped silver nanocluster [AuAg(SCHPh)X] (X = Cl or Br). <i>Nanoscale</i> , 2016 , 8, 18905-18911	7.7	61
393	Exploring the Reducing Ability of Organic Dye (Acr-Mes) for Fluorination and Oxidation of Benzylic C(sp)-H Bonds under Visible Light Irradiation. <i>Organic Letters</i> , 2017 , 19, 3009-3012	6.2	60
392	Copper(I)-Catalyzed Three-Component Click/Alkynylation: One-Pot Synthesis of 5-Alkynyl-1,2,3-triazoles. <i>Organic Letters</i> , 2016 , 18, 4158-61	6.2	60
391	Atom Transfer Radical Addition to Alkynes and Enynes: A Versatile Gold/Photoredox Approach to Thio-Functionalized Vinylsulfones. <i>ACS Catalysis</i> , 2018 , 8, 8237-8243	13.1	60
390	A Hydrogen-Bonded-Supramolecular-Polymer-Based Nanoprobe for Ratiometric Oxygen Sensing in Living Cells. <i>Advanced Functional Materials</i> , 2016 , 26, 5419-5425	15.6	60
389	Diphosphine-protected ultrasmall gold nanoclusters: opened icosahedral Au and heart-shaped Au clusters. <i>Chemical Science</i> , 2018 , 9, 1251-1258	9.4	60
388	Anion-templated nanosized silver clusters protected by mixed thiolate and diphosphine. <i>Nanoscale</i> , 2017 , 9, 3601-3608	7.7	58
387	Switch of the Lowest Excited-States of Terpyridylplatinum(II) Acetylide Complexes Bearing Amino or Azacrown Moieties by Proton and Cations. <i>European Journal of Inorganic Chemistry</i> , 2004 , 2004, 1948	-1954	58
386	BowtieArene: A Dual Macrocycle Exhibiting Stimuli-Responsive Fluorescence. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10059-10065	16.4	57
385	Two Unprecedented POM-Based Inorganic-Organic Hybrids with Concomitant Heteropolytungstate and Molybdate. <i>Inorganic Chemistry</i> , 2017 , 56, 2481-2489	5.1	56
384	A Water-Stable Cl@Ag Cluster Based Metal-Organic Open Framework for Dichromate Trapping and Bacterial Inhibition. <i>Inorganic Chemistry</i> , 2017 , 56, 11891-11899	5.1	56
383	A Bio-inspired Cu O Cubane: Effective Molecular Catalysts for Electrocatalytic Water Oxidation in Aqueous Solution. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7850-7854	16.4	55
382	Reversible multistimuli-responsive vesicles formed by an amphiphilic cationic platinum(II) terpyridyl complex with a ferrocene unit in water. <i>Chemical Communications</i> , 2012 , 48, 10886-8	5.8	54
381	Electron transfer and hydrogen generation from a molecular dyad: platinum(II) alkynyl complex anchored to [FeFe] hydrogenase subsite mimic. <i>Dalton Transactions</i> , 2012 , 41, 2420-6	4.3	53
380	Semiconductor nanocrystals for small molecule activation via artificial photosynthesis. <i>Chemical Society Reviews</i> , 2020 , 49, 9028-9056	58.5	53

(2018-2019)

379	Chalcogens-Induced AgZ@Ag (Z = S or Se) Core-Shell Nanoclusters: Enlarged Tetrahedral Core and Homochiral Crystallization. <i>Journal of the American Chemical Society</i> , 2019 , 141, 17884-17890	16.4	52	
378	Highly efficient cucurbit[8]uril-templated intramolecular photocycloaddition of 2-naphthalene-labeled poly(ethylene glycol) in aqueous solution. <i>Journal of Organic Chemistry</i> , 2008 , 73, 491-4	4.2	52	
377	Photocatalysis with Quantum Dots and Visible Light for Effective Organic Synthesis. <i>Chemistry - A European Journal</i> , 2018 , 24, 11530-11534	4.8	51	
376	Visible Light Initiated Hantzsch Synthesis of 2,5-Diaryl-Substituted Pyrroles at Ambient Conditions. <i>Organic Letters</i> , 2016 , 18, 2479-82	6.2	51	
375	Titanium-Oxide Host Clusters with Exchangeable Guests. <i>Journal of the American Chemical Society</i> , 2018 , 140, 66-69	16.4	51	
374	An isolable catenane consisting of two MBius conjugated nanohoops. <i>Nature Communications</i> , 2018 , 9, 3037	17.4	50	
373	A triad [FeFe] hydrogenase system for light-driven hydrogen evolution. <i>Chemical Communications</i> , 2011 , 47, 8406-8	5.8	50	
372	Comparison of H2 photogeneration by [FeFe]-hydrogenase mimics with CdSe QDs and Ru(bpy)3Cl2 in aqueous solution. <i>Energy and Environmental Science</i> , 2016 , 9, 2083-2089	35.4	50	
371	Recent Advances in Sensitized Photocathodes: From Molecular Dyes to Semiconducting Quantum Dots. <i>Advanced Science</i> , 2018 , 5, 1700684	13.6	49	
370	Gold/Lewis Acid Catalyzed Cycloisomerization/Diastereoselective [3 + 2] Cycloaddition Cascade: Synthesis of Diverse Nitrogen-Containing Spiro Heterocycles. <i>Organic Letters</i> , 2016 , 18, 4614-7	6.2	49	
369	FeOffeO2 nanocomposites: an efficient and highly selective catalyst system for photothermal CO2 reduction to CO. <i>NPG Asia Materials</i> , 2020 , 12,	10.3	48	
368	Silica-Protected Ultrathin Ni3FeN Nanocatalyst for the Efficient Hydrolytic Dehydrogenation of NH3BH3. <i>Advanced Energy Materials</i> , 2018 , 8, 1702780	21.8	48	
367	Oxidative Cyclization Synthesis of Tetrahydroquinolines and Reductive Hydrogenation of Maleimides under Redox-Neutral Conditions. <i>Organic Letters</i> , 2018 , 20, 2916-2920	6.2	48	
366	Cobaloxime Catalysis: Selective Synthesis of Alkenylphosphine Oxides under Visible Light. <i>Journal of the American Chemical Society</i> , 2019 , 141, 13941-13947	16.4	48	
365	Visible-Light Photocatalysis Employing Dye-Sensitized Semiconductor: Selective Aerobic Oxidation of Benzyl Ethers. <i>ACS Catalysis</i> , 2017 , 7, 8134-8138	13.1	47	
364	High-Nuclear Organometallic Copper(I)-Alkynide Clusters: Thermochromic Near-Infrared Luminescence and Solution Stability. <i>Chemistry - A European Journal</i> , 2016 , 22, 17619-17626	4.8	47	
363	Multifunctional Triple-Decker Inverse 12-Metallacrown-4 Sandwiching Halides. <i>ACS Applied Materials & ACS Applied & ACS </i>	9.5	45	
362	Johnson Solids: Anion-Templated Silver Thiolate Clusters Capped by Sulfonate. <i>Chemistry - A European Journal</i> , 2018 , 24, 1640-1650	4.8	45	

361	Benzene C-H Etherification via Photocatalytic Hydrogen-Evolution Cross-Coupling Reaction. <i>Organic Letters</i> , 2017 , 19, 2206-2209	6.2	44
360	A Cascade Cross-Coupling and in Situ Hydrogenation Reaction by Visible Light Catalysis. <i>Advanced Synthesis and Catalysis</i> , 2014 , 356, 2846-2852	5.6	44
359	Photosensitized Oxidation of Alkenes Adsorbed on Pentasil Zeolites. <i>Journal of the American Chemical Society</i> , 1998 , 120, 5179-5186	16.4	44
358	Ambient Chemical Fixation of CO Using a Robust Ag Cluster-Based Two-Dimensional Metal-Organic Framework. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 20031-20036	16.4	44
357	Hole-Accepting-Ligand-Modified CdSe QDs for Dramatic Enhancement of Photocatalytic and Photoelectrochemical Hydrogen Evolution by Solar Energy. <i>Advanced Science</i> , 2016 , 3, 1500282	13.6	44
356	Copper(I)-Catalyzed Three-Component Click/Persulfuration Cascade: Regioselective Synthesis of Triazole Disulfides. <i>Organic Letters</i> , 2018 , 20, 2956-2959	6.2	43
355	Zeolites as Templates for Preparation of Large-Ring Compounds: Intramolecular Photocycloaddition of Diaryl Compounds. <i>Journal of the American Chemical Society</i> , 1998 , 120, 11594-11	166 2	43
354	Bench-Stable 5-Stannyl Triazoles by a Copper(I)-Catalyzed Interrupted Click Reaction: Bridge to Trifluoromethyltriazoles and Trifluoromethylthiotriazoles. <i>Organic Letters</i> , 2017 , 19, 2098-2101	6.2	42
353	Core Modulation of 70-Nuclei Core-Shell Silver Nanoclusters. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6276-6279	16.4	42
352	Cu-Catalyzed Three-Component Coupling of Aryne, Alkyne, and Benzenesulfonothioate: Modular Synthesis of o-Alkynyl Arylsulfides. <i>Organic Letters</i> , 2016 , 18, 4154-7	6.2	42
351	Radical Addition of Hydrazones by Bromo Ketones To Prepare 1,3,5-Trisubstituted Pyrazoles via Visible Light Catalysis. <i>Journal of Organic Chemistry</i> , 2016 , 81, 7127-33	4.2	42
350	Synthesis of spiroaminals by bimetallic Au/Sc relay catalysis: TMS as a traceless controlling group. <i>Chemical Communications</i> , 2014 , 50, 12084-7	5.8	42
349	Cucurbit[8]uril-mediated photodimerization of alkyl 2-naphthoate in aqueous solution. <i>Tetrahedron Letters</i> , 2008 , 49, 1502-1505	2	42
348	Synthesis and Characterization of a Pentiptycene-Derived Dual Oligoparaphenylene Nanohoop. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 3943-3947	16.4	42
347	Space Craft-like Octanuclear Co(II)-Silsesquioxane Nanocages: Synthesis, Structure, Magnetic Properties, Solution Behavior, and Catalytic Activity for Hydroboration of Ketones. <i>Inorganic Chemistry</i> , 2019 , 58, 4574-4582	5.1	41
346	Polymorphism in Atomically Precise Cu Nanocluster Incorporating Tetrahedral [Cu] Kernel. <i>Journal of the American Chemical Society</i> , 2020 , 142, 5834-5841	16.4	41
345	Pure Organic Room Temperature Phosphorescence from Unique Micelle-Assisted Assembly of Nanocrystals in Water. <i>Advanced Functional Materials</i> , 2020 , 30, 1907282	15.6	41
344	Intramolecular Long-Distance Electron Transfer and Triplet Energy Transfer. Photophysical and Photochemical Studies on a NorbornadieneBteroidBenzidine System. <i>Journal of the American Chemical Society</i> , 1997 , 119, 5348-5354	16.4	41

(2015-2001)

23.2 5.2	4 ¹
).4	
	40
ó.2	40
5.5	40
ó.2	39
3.1	39
5.6	39
7.4	39
13.1	38
0.4	38
7.4	37
.6	37
5	37
24	36
;.8	35
3.3	35
	5.2 -5 5.6 7.4 3.1 -7.4 -6 -5 4

325	Surface stoichiometry manipulation enhances solar hydrogen evolution of CdSe quantum dots. Journal of Materials Chemistry A, 2018 , 6, 6015-6021	13	35
324	Mechanistic Insights into the Interface-Directed Transformation of Thiols into Disulfides and Molecular Hydrogen by Visible-Light Irradiation of Quantum Dots. <i>Angewandte Chemie</i> , 2014 , 126, 2117	7- 2 121	35
323	Elimination-Fusion Self-Assembly of a Nanometer-Scale 72-Nucleus Silver Cluster Caging a Pair of [EuW O] Polyoxometalates. <i>Chemistry - A European Journal</i> , 2018 , 24, 1998-2003	4.8	35
322	Activation of Epoxides by a Cooperative Iron hiolate Catalyst: Intermediacy of Ferrous Alkoxides in Catalytic Hydroboration. <i>ACS Catalysis</i> , 2017 , 7, 7709-7717	13.1	34
321	Protonated Graphitic Carbon Nitride with Surface Attached Molecule as Hole Relay for Efficient Photocatalytic O2 Evolution. <i>ACS Catalysis</i> , 2016 , 6, 8336-8341	13.1	34
320	Copper-Catalyzed Oxidative Trifunctionalization of Olefins: An Access to Functionalized Keto Thiosulfones. <i>Journal of Organic Chemistry</i> , 2018 , 83, 9449-9455	4.2	34
319	Characterization of lyotropic liquid crystals formed in the mixtures of 1-alkyl-3-methylimidazolium bromide/p-xylene/water. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2009 , 335, 80-87	5.1	34
318	Gamma-cyclodextrin-directed enantioselective photocyclodimerization of methyl 3-methoxyl-2-naphthoate. <i>Journal of Organic Chemistry</i> , 2009 , 74, 3506-15	4.2	34
317	Tracking Co(I) Intermediate in Operando in Photocatalytic Hydrogen Evolution by X-ray Transient Absorption Spectroscopy and DFT Calculation. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 5253-5258	6.4	34
316	A Redox Shuttle Accelerates O Evolution of Photocatalysts Formed In Situ under Visible Light. <i>Advanced Materials</i> , 2017 , 29, 1606009	24	33
315	A giant 90-nucleus silver cluster templated by hetero-anions. <i>Chemical Communications</i> , 2018 , 54, 4461-	-4,4864	33
314	Thiolate-Mediated Photoinduced Synthesis of Ultrafine Ag S Quantum Dots from Silver Nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14952-14957	16.4	33
313	Long-Lived Photoinduced Charge Separation in Ru(Bpy)32+/Viologen System at Nafion MembraneBolution Interface. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 9468-9474	3.4	33
312	Modification of Photochemical Reactivity by Nafion. Photocyclization and PhotochemicalCisTransIsomerization of Azobenzene. <i>Journal of Organic Chemistry</i> , 1996 , 61, 9417-9421	^{4.2}	33
311	Effects of Substitutional Dopants on the Photoresponse of a Polyoxotitanate Cluster. <i>Inorganic Chemistry</i> , 2016 , 55, 8493-501	5.1	33
310	Structure, solution assembly, and electroconductivity of nanosized argento-organic-cluster/framework templated by chromate. <i>Nanoscale</i> , 2017 , 9, 5305-5314	7.7	32
309	Bio-inspired controlled release through compressionEelaxation cycles of microcapsules. <i>NPG Asia Materials</i> , 2015 , 7, e148-e148	10.3	32
308	A Keplerian Ag nest of Platonic and Archimedean polyhedra in different symmetry groups. <i>Nature Communications</i> , 2020 , 11, 3316	17.4	32

307	Copper-catalyzed carbene insertion into the sulfurBulfur bond of benzenesulfonothioate. <i>Organic Chemistry Frontiers</i> , 2018 , 5, 1371-1374	5.2	32
306	Reactivity and mechanistic insight into the cross coupling reaction between isochromans and weto esters through CH bond activation under visible light irradiation. <i>Organic Chemistry</i> Frontiers, 2016 , 3, 486-490	5.2	32
305	Terminal Thiolate-Dominated H/D Exchanges and H Release: Diiron Thiol-Hydride. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11454-11463	16.4	32
304	Susceptible Surface Sulfide Regulates Catalytic Activity of CdSe Quantum Dots for Hydrogen Photogeneration. <i>Advanced Materials</i> , 2019 , 31, e1804872	24	32
303	Diastereoselective Synthesis of Polysubstituted Spirocyclopenta[c]furans by Gold-Catalyzed Cascade Reaction. <i>Organic Letters</i> , 2019 , 21, 692-695	6.2	32
302	Heptanuclear CoCo Cluster as Efficient Water Oxidation Catalyst. <i>Inorganic Chemistry</i> , 2017 , 56, 1591-1	5 <u>9</u> &	31
301	NiD Cooperation versus Nickel(II) Hydride in Catalytic Hydroboration of N-Heteroarenes. <i>ACS Catalysis</i> , 2019 , 9, 3849-3857	13.1	31
300	Facile formation of CoN4 active sites onto a SiO2 support to achieve robust CO2 and proton reduction in a noble-metal-free photocatalytic system. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 10475-	10482	31
299	Divergent synthesis of chiral cyclic azides via asymmetric cycloaddition reactions of vinyl azides. <i>Nature Communications</i> , 2019 , 10, 3158	17.4	31
298	Regioselective Amination of an Aromatic C-H Bond by Trifluoroacetic Acid via Electrochemistry. <i>Organic Letters</i> , 2019 , 21, 5581-5585	6.2	31
297	Artificial Light-Harvesting System Based on Multifunctional Surface-Cross-Linked Micelles. <i>Angewandte Chemie</i> , 2012 , 124, 2130-2134	3.6	31
296	Photoinduced Electron Transfer and Charge-Recombination in 2-Ureido-4[1H]-Pyrimidinone Quadruple Hydrogen-Bonded Porphyrin Eullerene Assemblies. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 23634-23641	3.8	31
295	Near-Infrared Emitters: Stepwise Assembly of Two Heteropolynuclear Clusters with Tunable Ag(I):Zn(II) Ratio. <i>Inorganic Chemistry</i> , 2016 , 55, 4757-63	5.1	31
294	Three-Dimensional Graphene Networks with Abundant Sharp Edge Sites for Efficient Electrocatalytic Hydrogen Evolution. <i>Angewandte Chemie</i> , 2018 , 130, 198-203	3.6	30
293	Combining visible light catalysis and transfer hydrogenation for in situ efficient and selective semihydrogenation of alkynes under ambient conditions. <i>Chemical Communications</i> , 2016 , 52, 1800-3	5.8	30
292	Nonstoichiometric Cu In S Quantum Dots for Efficient Photocatalytic Hydrogen Evolution. <i>ChemSusChem</i> , 2017 , 10, 4833-4838	8.3	30
291	Photoresponsive Hydrogen-Bonded Supramolecular Polymers Based on a Stiff Stilbene Unit. <i>Angewandte Chemie</i> , 2013 , 125, 9920-9924	3.6	30
290	A Post-Functionalizable Iso-Polyoxotitanate Cage Cluster. <i>Inorganic Chemistry</i> , 2016 , 55, 7075-8	5.1	30

289	Synthesis of Oxazoles by Tandem Cycloisomerization/Allylic Alkylation of Propargyl Amides with Allylic Alcohols: Zn(OTf)2 as [Acid and [Acid Catalyst. <i>Journal of Organic Chemistry</i> , 2015 , 80, 12718-24	4.2	29
288	Addition of a BH Bond across an Amidolobalt Bond: CoIIH-Catalyzed Hydroboration of Olefins. <i>Organometallics</i> , 2018 , 37, 1462-1467	3.8	29
287	Metal-Free, Redox-Neutral, Site-Selective Access to Heteroarylamine via Direct Radical-Radical Cross-Coupling Powered by Visible Light Photocatalysis. <i>Journal of the American Chemical Society</i> , 2020 , 142, 16805-16813	16.4	29
286	ZnCl2 Enabled Synthesis of Highly Crystalline and Emissive Carbon Dots with Exceptional Capability to Generate O2? [Matter, 2020, 2, 495-506]	12.7	28
285	Benzoate-Induced High-Nuclearity Silver Thiolate Clusters. <i>Chemistry - A European Journal</i> , 2018 , 24, 4967-4972	4.8	28
284	Oxide-Modified Nickel Photocatalysts for the Production of Hydrocarbons in Visible Light. <i>Angewandte Chemie</i> , 2016 , 128, 4287-4291	3.6	28
283	Luminescent supramolecular polymer nanoparticles for ratiometric hypoxia sensing, imaging and therapy. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 1893-1899	7.8	28
282	Identifying key intermediates generated in situ from Cu(II) salt-catalyzed C-H functionalization of aromatic amines under illumination. <i>Science Advances</i> , 2017 , 3, e1700666	14.3	28
281	A Sustainable Strategy for the Synthesis of Pyrochlore H Nb O Hollow Microspheres as Photocatalysts for Overall Water Splitting. <i>ChemPlusChem</i> , 2017 , 82, 181-185	2.8	28
280	Iron-Catalyzed Reductive Coupling of Nitroarenes with Olefins: Intermediate of IronNitroso Complex. <i>ACS Catalysis</i> , 2020 , 10, 276-281	13.1	28
279	Different Silver Nanoparticles in One Crystal: Ag210(iPrPhS)71(Ph3P)5Cl and Ag211(iPrPhS)71(Ph3P)6Cl. <i>Angewandte Chemie</i> , 2019 , 131, 201-205	3.6	28
278	Anion-Templated Nanosized Silver Alkynyl Clusters: Cluster Engineering and Solution Behavior. <i>Chemistry - A European Journal</i> , 2017 , 23, 3432-3437	4.8	27
277	Enhanced visible-light-driven hydrogen generation by in situ formed photocatalyst RGOIdSNixS from metal salts and RGOIdS composites. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9537-9543	13	27
276	Unveiling Catalytic Sites in a Typical Hydrogen Photogeneration System Consisting of Semiconductor Quantum Dots and 3d-Metal Ions. <i>Journal of the American Chemical Society</i> , 2020 , 142, 4680-4689	16.4	27
275	Enhanced Charge Separation Efficiency Accelerates Hydrogen Evolution from Water of Carbon Nitride and 3,4,9,10-Perylene-tetracarboxylic Dianhydride Composite Photocatalyst. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 3515-3521	9.5	27
274	Synthesis of a disulfide-bridged bispillar[5]arene and its application in supramolecular polymers. <i>Polymer Chemistry</i> , 2016 , 7, 2057-2061	4.9	27
273	Temperature-induced Sn(II) supramolecular isomeric frameworks as promising heterogeneous catalysts for cyanosilylation of aldehydes. <i>Science China Chemistry</i> , 2020 , 63, 182-186	7.9	27
272	A fluorescent turn-on probe for visualizing lysosomes in hypoxic tumor cells. <i>Analyst, The</i> , 2016 , 141, 2879-82	5	27

(2016-2021)

271	A 34-Electron Superatom Ag Cluster with Regioselective Ternary Ligands Shells and Its 2D Rhombic Superlattice Assembly. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 4231-4237	16.4	27	
270	Gold-Catalyzed Cycloisomerization/1,5-H Migration/Diels-Alder Reaction Cascade: Synthesis of Complex Nitrogen-Containing Heterocycles. <i>Organic Letters</i> , 2017 , 19, 1072-1075	6.2	26	
269	Involving Single-Atom Silver(0) in Selective Dehalogenation by AgF under Visible-Light Irradiation. <i>ACS Catalysis</i> , 2019 , 9, 6335-6341	13.1	26	
268	Structural Diversity of Copper(I) Cluster-Based Coordination Polymers with Pyrazine-2-thiol Ligand. <i>Inorganic Chemistry</i> , 2020 , 59, 2680-2688	5.1	26	
267	Patterning and pixelation of colloidal photonic crystals for addressable integrated photonics. Journal of Materials Chemistry, 2011 , 21, 11330		26	
266	Monochromophore-Based Phosphorescence and Fluorescence from Pure Organic Assemblies for Ratiometric Hypoxia Detection. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 23456-23460	16.4	26	
265	Counteranion-Stabilized Titanium(IV) Isopolyoxocationic Clusters Isolated from Water. <i>Inorganic Chemistry</i> , 2016 , 55, 4704-9	5.1	26	
264	Copper(I)-Catalyzed Asymmetric Interrupted Kinugasa Reaction: Synthesis of 町hiofunctional Chiral 和actams. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 4561-4565	16.4	26	
263	Scandium-catalyzed electrophilic alkene difunctionalization: regioselective synthesis of thiosulfone derivatives. <i>Organic Chemistry Frontiers</i> , 2019 , 6, 1663-1666	5.2	25	
262	Small Titanium Oxo Clusters: Primary Structures of Titanium(IV) in Water. <i>Inorganic Chemistry</i> , 2016 , 55, 3212-4	5.1	25	
261	Photoinduced triplet-triplet energy transfer in a 2-ureido-4(1H)-pyrimidinone-bridged, quadruply hydrogen-bonded ferrocene-fullerene assembly. <i>ChemPhysChem</i> , 2013 , 14, 198-203	3.2	25	
260	Photoreduction: Defect-Rich Ultrathin ZnAl-Layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO2 to CO with Water (Adv. Mater. 47/2015). <i>Advanced Materials</i> , 2015 , 27, 7823-782	2 3 4	25	
259	Benzophenone-Initiated Photoisomerization of the Norbornadiene Group in a BenzophenoneBteroidNorbornadiene System via Long-Distance Intramolecular Triplet Energy Transfer. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 4480-4484		25	
258	Visible light-catalytic dehydrogenation of benzylic alcohols to carbonyl compounds by using an eosin Y and nickelthiolate complex dual catalyst system. <i>Green Chemistry</i> , 2019 , 21, 1401-1405	10	25	
257	[Au(dppm)Cl]: a phosphine-protected gold nanocluster with rich charge states. <i>Dalton Transactions</i> , 2019 , 48, 3635-3640	4.3	24	
256	A Photochemical Route towards Metal Sulfide Nanosheets from Layered Metal Thiolate Complexes. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8443-8447	16.4	24	
255	Visible Light-Catalyzed Benzylic C-H Bond Chlorination by a Combination of Organic Dye (Acr-Mes) and -Chlorosuccinimide. <i>Journal of Organic Chemistry</i> , 2020 , 85, 9080-9087	4.2	24	
254	Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water. <i>Scientific Reports</i> , 2016 , 6, 29851	4.9	24	

253	Direct Arylation of Unactivated Alkanes with Heteroarenes by Visible-Light Catalysis. <i>Journal of Organic Chemistry</i> , 2019 , 84, 12904-12912	4.2	24
252	Synthesis and photophysical studies of calix[4]arene-based binuclear platinum(II) complexes: probing metal-metal and ligand-ligand interactions. <i>Inorganic Chemistry</i> , 2008 , 47, 5099-106	5.1	24
251	Hydride Transfer from Iron(II) Hydride Compounds to NAD(P)+ Analogues. <i>Organometallics</i> , 2016 , 35, 1151-1159	3.8	24
250	A hexadecanuclear silver alkynyl cluster based NbO framework with triple emissions from the visible to near-infrared II region. <i>Chemical Communications</i> , 2018 , 54, 11905-11908	5.8	24
249	Photoresponsive AA/BB supramolecular polymers comprising stiff-stilbene based guests and bispillar[5]arenes. <i>Polymer Chemistry</i> , 2017 , 8, 3596-3602	4.9	23
248	Successive Cu/Pd transmetalation relay catalysis in stereoselective synthesis of tetraarylethenes. <i>Organic Chemistry Frontiers</i> , 2015 , 2, 1366-1373	5.2	23
247	Microemulsions of N-alkylimidazolium ionic liquid and their performance as microreactors for the photocycloaddition of 9-substituted anthracenes. <i>Langmuir</i> , 2009 , 25, 5484-90	4	23
246	Microreactor-controlled selectivity in organic photochemical reactions. <i>Pure and Applied Chemistry</i> , 2000 , 72, 2289-2298	2.1	23
245	Visible Light Induced Cross-Coupling Hydrogen Evolution Reactions. <i>Acta Chimica Sinica</i> , 2017 , 75, 34	3.3	23
244	Interplay between Terminal and Bridging Diiron Hydrides in Neutral and Oxidized States. <i>Organometallics</i> , 2017 , 36, 2245-2253	3.8	22
243	A Phosphorescent Platinum(II) Bipyridyl Supramolecular Polymer Based on Quadruple Hydrogen Bonds. <i>Chemistry - A European Journal</i> , 2016 , 22, 18132-18139	4.8	22
242	Photoelectrochemical cell for P-H/C-H cross-coupling with hydrogen evolution. <i>Chemical Communications</i> , 2019 , 55, 10376-10379	5.8	22
241	Molecular logic circuit based on a multi-state mononuclear platinum(ii) terpyridyl complex. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 13026-33	3.6	22
240	Efficient and selective photodimerization of 2-naphthalenecarbonitrile mediated by cucurbit[8]uril in an aqueous solution. <i>Photochemical and Photobiological Sciences</i> , 2011 , 10, 1441-4	4.2	22
239	Photoinduced intramolecular electron transfer and triplet energy transfer in a steroid-linked norbornadiene-carbazole dyad. <i>Chemistry - A European Journal</i> , 2003 , 9, 2763-9	4.8	22
238	Asymmetric Synthesis of a Fused Tricyclic Hydronaphthofuran Scaffold by Desymmetric [2+2+2] Cycloaddition. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 2220-2224	16.4	22
237	Colorimetric sensors with different reactivity for the quantitative determination of cysteine, homocysteine and glutathione in a mixture. <i>RSC Advances</i> , 2015 , 5, 13042-13045	3.7	21
236	Direct synthesis of sulfide capped CdS and CdS/ZnS colloidal nanocrystals for efficient hydrogen evolution under visible light irradiation. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 16328-16332	13	21

235	One-Pot Hydrothermal Synthesis and Photocatalytic Hydrogen Evolution of Pyrochlore Type K2Nb2O6. <i>Chinese Journal of Chemistry</i> , 2014 , 32, 485-490	4.9	21
234	Highly sensitive and selective detection of beryllium ions using a microcantilever modified with benzo-9-crown-3 doped hydrogel. <i>Analyst, The</i> , 2012 , 137, 1220-4	5	21
233	Regioselectivity in the Photocycloaddition of 9-Substituted Anthracenes Incorporated within Nafion Membranes. <i>Journal of Organic Chemistry</i> , 1998 , 63, 5857-5862	4.2	21
232	Von Sonnenlicht zu Brennstoffen: aktuelle Fortschritte der C1-Solarchemie. <i>Angewandte Chemie</i> , 2019 , 131, 17690-17715	3.6	20
231	Mesoporous Silica-Coated Gold Nanorods with Designable Anchor Peptides for Chemo-Photothermal Cancer Therapy. <i>ACS Applied Nano Materials</i> , 2020 , 3, 5070-5078	5.6	20
230	Controlled partial transfer hydrogenation of quinolines by cobalt-amido cooperative catalysis. <i>Nature Communications</i> , 2020 , 11, 1249	17.4	20
229	Site- and Spatial-Selective Integration of Non-noble Metal Ions into Quantum Dots for Robust Hydrogen Photogeneration. <i>Matter</i> , 2020 , 3, 571-585	12.7	20
228	An Octanuclear Cobalt Cluster Protected by Macrocyclic Ligand: In Situ Ligand-Transformation-Assisted Assembly and Single-Molecule Magnet Behavior. <i>Inorganic</i> <i>Chemistry</i> , 2020 , 59, 5683-5693	5.1	20
227	Water-soluble sulfonatedgrapheneplatinum nanocomposites: facile photochemical preparation with enhanced catalytic activity for hydrogen photogeneration. <i>Catalysis Science and Technology</i> , 2013 , 3, 1815	5.5	20
226	Stepwise photochemical-chiral delivery in gamma-cyclodextrin-directed enantioselective photocyclodimerization of methyl 3-methoxyl-2-naphthoate in aqueous solution. <i>Langmuir</i> , 2010 , 26, 782-5	4	20
225	Photoinduced triplet-triplet energy transfer via the 2-ureido-4[1H]-pyrimidinone self-complementary quadruple hydrogen-bonded module. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 3865-9	2.8	20
224	Intramolecular photodimerization of 2-naphthoates: successful application of hydrophobic forces in the preparation of large-ring compounds. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1994 , 90, 947		20
223	Cooperative Molybdenum-Thiolate Reactivity for Transfer Hydrogenation of Nitriles. <i>ACS Catalysis</i> , 2020 , 10, 380-390	13.1	20
222	Photocatalysis with Quantum Dots and Visible Light: Selective and Efficient Oxidation of Alcohols to Carbonyl Compounds through a Radical Relay Process in Water. <i>Angewandte Chemie</i> , 2017 , 129, 306	6 ⁻³ 3670) ¹⁹
221	Breaking aziridines to construct morpholines with a gold(i)-catalyzed tandem ring-opening and cycloisomerization reaction. <i>Organic and Biomolecular Chemistry</i> , 2016 , 14, 10973-10980	3.9	19
220	Long-Lived Charge Separation in a Dyad System Containing Cyclometalated Platinum(II) Complex and Ferrocene Donor. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 833-839	3.8	19
219	IRA-200 resin-supported platinum(II) complex for photooxidation of olefins. <i>Tetrahedron</i> , 2007 , 63, 490)7 <u>₂4</u> ₽11	1 19
218	Synthesis of 田unsaturated Elactones via photooxygenation of 2,3-dihydrofurans followed by ferrous ion-catalyzed gem-dehydration. <i>Tetrahedron</i> , 2006 , 62, 10688-10693	2.4	19

217	Divergent Synthesis of 3,3-Disubstituted Oxindoles Initiated by Palladium-Catalyzed Intramolecular Arylation of Unsaturated Amides. <i>Asian Journal of Organic Chemistry</i> , 2016 , 5, 971-975	3	19
216	A multi-stimuli-responsive fluorescence switch based on E🛽 isomerization of hydrazone. <i>RSC Advances</i> , 2016 , 6, 41002-41006	3.7	19
215	Sequential Transformation of Terminal Alkynes to 1,3-Dienes by a Cooperative Cobalt Pyridonate Catalyst. <i>Organometallics</i> , 2019 , 38, 3752-3759	3.8	18
214	Hydroalkynylative cyclization of 1,6-enynes with terminal alkynes. <i>Chemical Science</i> , 2019 , 10, 6863-686	579.4	18
213	An efficient synthesis of gem-diiodoolefins and (E)-iodoalkenes from propargylic amides with a Cu(I)/Cu(III) cycle. <i>Organic Chemistry Frontiers</i> , 2015 , 2, 578-585	5.2	18
212	Photoredox Catalysis of Aromatic Ketoesters for in Situ Production of Transient and Persistent Radicals for Organic Transformation. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 5365-5370	16.4	18
211	Scandium (III)-Catalyzed Cycloaddition of in situ Generated ortho-Quinone Methides with Vinyl Azides: An Efficient Access to Substituted 4H-Chromenes. <i>Advanced Synthesis and Catalysis</i> , 2018 , 360, 3585-3589	5.6	18
210	Cu(ii) coordination polymers with nitrogen catenation ligands for efficient photocatalytic water oxidation. <i>Chemical Communications</i> , 2018 , 54, 4794-4797	5.8	17
209	A pillar-layered porous CoII-MOF with dual active sites for selective gas adsorption. <i>CrystEngComm</i> , 2018 , 20, 4905-4909	3.3	17
208	Nanocrystals@Hollow Mesoporous Silica Reverse-Bumpy-Ball Structure Nanoreactors by a Versatile Microemulsion-Templated Approach. <i>Small Methods</i> , 2018 , 2, 1800105	12.8	17
207	Visible Light Irradiation of Acyl Oxime Esters and Styrenes Efficiently Constructs €Carbonyl Imides by a Scission and Four-Component Reassembly Process. <i>Organic Letters</i> , 2019 , 21, 8789-8794	6.2	17
206	Enhancement of diastereoselectivity in photodimerization of alkyl 2-naphthoates with chiral auxiliaries via inclusion within Eyclodextrin cavities. <i>Journal of Organic Chemistry</i> , 2012 , 77, 1685-92	4.2	17
205	Facile preparation of 3,4-diarylpyrroles and hydrogen by a platinum(II) terpyridyl complex. <i>Inorganic Chemistry</i> , 2009 , 48, 9995-7	5.1	17
204	Quantum dots enable direct alkylation and arylation of allylic C(sp3) bonds with hydrogen evolution by solar energy. <i>CheM</i> , 2021 , 7, 1244-1257	16.2	17
203	Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O-O Bond Formation Pathways by Different Aggregation Patterns. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 6229-34	16.4	17
202	Octanuclear Ni(II) cubes based on halogen-substituted pyrazolates: synthesis, structure, electrochemistry and magnetism. <i>CrystEngComm</i> , 2016 , 18, 3462-3471	3.3	17
201	Visual detection of carbonate ions by inverse opal photonic crystal polymers in aqueous solution. Journal of Materials Chemistry C, 2015 , 3, 9524-9527	7.1	16
200	Decarboxylative sulfenylation of amino acids via metallaphotoredox catalysis. <i>Organic Chemistry Frontiers</i> , 2019 , 6, 3224-3227	5.2	16

(2020-2002)

199	Two-photon-pumped frequency-upconverted lasing and optical power limiting properties of vinylbenzothiazole-containing compounds in solution. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 5744	4 ³ 5747	, 16	
198	Self-Organization into Preferred Sites by Mg, Mn, and Mn in Brucite-Structured M Cluster. <i>Inorganic Chemistry</i> , 2019 , 58, 3800-3806	5.1	16	
197	Multiple-State Emissions from Neat, Single-Component Molecular Solids: Suppression of Kasha's Rule. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10173-10178	16.4	16	
196	Enclosing classical polyoxometallates in silver nanoclusters. <i>Nanoscale</i> , 2019 , 11, 10927-10931	7.7	15	
195	Copper(I)-Catalyzed Interrupted Click/Sulfenylation Cascade: One-Pot Synthesis of Sulfur Cycle Fused 1,2,3-Triazoles. <i>Chinese Journal of Chemistry</i> , 2020 , 38, 445-448	4.9	15	
194	Thiol Activation toward Selective Thiolation of Aromatic C-H Bond. <i>Organic Letters</i> , 2020 , 22, 3804-3809	6.2	15	
193	Fabrication and directed assembly of magnetic Janus rods. New Journal of Chemistry, 2016, 40, 6541-65	45 6	15	
192	Visible light catalyzed aromatization of 1,3,5-triaryl-2-pyrazolines by platinum(II) polypyridyl complex under oxidant-free condition. <i>Science China Chemistry</i> , 2016 , 59, 175-179	7.9	15	
191	Visible light-induced photochemical oxygen evolution from water by 3,4,9,10-perylenetetracarboxylic dianhydride nanorods as an n-type organic semiconductor. <i>Catalysis Science and Technology</i> , 2016 , 6, 672-676	5.5	15	
190	Three Silver Nests Capped by Thiolate/Phenylphosphonate. <i>Chemistry - A European Journal</i> , 2018 , 24, 15096-15103	4.8	15	
189	Water-soluble copolymeric materials: switchable NIR two-photon fluorescence imaging agents for living cancer cells. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 502-510	7.3	15	
188	CHIMVIII Interaction-Driven Homochiral M and P Helices of Neutral (R,R)- and (S,S)-Bis(pyrrol-2-ylmethyleneamino)cyclohexane NiII Complexes. <i>European Journal of Inorganic Chemistry</i> , 2007 , 2007, 3315-3319	2.3	15	
187	Aggregation of Novel Betaine Surfactants N-(3-Alkoxy-2-hydroxypropyl)-N,N-dimethylglycines in Aqueous Solution: Micellization and Microenvironment Characteristics. <i>Langmuir</i> , 1999 , 15, 1011-1016	4	15	
186	A novel 58-nuclei silver nanowheel encapsulating a subvalent Ag64+ kernel. <i>Science China Chemistry</i> , 2020 , 63, 16-20	7.9	15	
185	pH-Controlled assembly of two novel Dawson-sandwiched clusters involving the in situ reorganization of trivacant ﴿[P2W15O56](12-) into divacant ﴿[P2W16O57](8.). <i>Dalton Transactions</i> , 2016 , 45, 8404-11	4.3	15	
184	Bimetallic nickel-cobalt hydrides in H activation and catalytic proton reduction. <i>Chemical Science</i> , 2019 , 10, 761-767	9.4	14	
183	Core Modulation of 70-Nuclei Core-Shell Silver Nanoclusters. <i>Angewandte Chemie</i> , 2019 , 131, 6342-634	5 3.6	14	
182	Flower-like cobalt carbide for efficient carbon dioxide conversion. <i>Chemical Communications</i> , 2020 , 56, 7849-7852	5.8	14	

181	Stiff-stilbene derivatives as new bright fluorophores with aggregation-induced emission. <i>Science China Chemistry</i> , 2019 , 62, 1194-1197	7.9	14
180	Modifying the symmetry of colloidal photonic crystals: a way towards complete photonic bandgap. Journal of Materials Chemistry C, 2014 , 2, 4100	7.1	14
179	Inner-assembly singlet energy transfer in naphthaleneInthracene system linked by 2-ureido-4{1H}-pyrimidinone binding module. <i>Tetrahedron Letters</i> , 2004 , 45, 6807-6811	2	14
178	Enhancement of Intramolecular Photocycloaddition of Bichromophoric Compounds via Inclusion in Low-Density Polyethylene Films. <i>Journal of Organic Chemistry</i> , 1999 , 64, 5156-5161	4.2	14
177	BaAuS: A Au-Based Intrinsic Photocatalyst for High-Performance Visible-Light Photocatalysis. Inorganic Chemistry, 2017 , 56, 5173-5181	5.1	13
176	Interfacial charge transfer in a functionalized polyoxotitanate cluster. <i>Inorganica Chimica Acta</i> , 2016 , 443, 279-283	2.7	13
175	A Bio-inspired Cu4O4 Cubane: Effective Molecular Catalysts for Electrocatalytic Water Oxidation in Aqueous Solution. <i>Angewandte Chemie</i> , 2018 , 130, 7976-7980	3.6	13
174	Aqueous Isolation of 17-Nuclear Zr/Hf Oxide Clusters during the Hydrothermal Synthesis of ZrO/HfO. <i>Chemistry - A European Journal</i> , 2018 , 24, 14701-14706	4.8	13
173	Direct Allylic C(sp)-H and Vinylic C(sp)-H Thiolation with Hydrogen Evolution by Quantum Dots and Visible Light. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 11779-11783	16.4	13
172	Synthesis, structure and magnetism of a novel CuII4TiIV5 heterometallic cluster. <i>Chinese Chemical Letters</i> , 2020 , 31, 809-812	8.1	13
171	Selective endoperoxide formation by heterogeneous TiO 2 photocatalysis with dioxygen. <i>Tetrahedron</i> , 2018 , 74, 2421-2427	2.4	12
170	Kagthe Cobalt(II)-Organic Layers as Robust Scaffolds for Highly Efficient Photocatalytic Oxygen Evolution. <i>ChemSusChem</i> , 2016 , 9, 1146-52	8.3	12
169	A Monophosphine Ligand Derived from Anthracene Photodimer: Synthetic Applications for Palladium-Catalyzed Coupling Reactions. <i>Organic Letters</i> , 2019 , 21, 8158-8163	6.2	12
168	Enhanced photocatalytic hydrogen evolution by combining water soluble graphene with cobalt salts. <i>Beilstein Journal of Nanotechnology</i> , 2014 , 5, 1167-74	3	12
167	Synthesis, structure, and chirality of hydroxyl- and carboxyl-functionalized cubane-like photodimers of 2-naphthalene. <i>Tetrahedron</i> , 2007 , 63, 3133-3137	2.4	12
166	Multifaceted Bicubane Co4 Clusters: Magnetism, Photocatalytic Oxygen Evolution, and Electrical Conductivity. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 3253-3261	2.3	12
165	Revealing the chirality origin and homochirality crystallization of Ag nanocluster at the molecular level. <i>Nature Communications</i> , 2021 , 12, 4966	17.4	12
164	Solvent Effects on Hydride Transfer from Cp*(P-P)FeH to BNA+ Cation. <i>Organometallics</i> , 2017 , 36, 1238-3	32 44	11

163	Gold/photoredox-cocatalyzed atom transfer thiosulfonylation of alkynes: Stereoselective synthesis of vinylsulfones. <i>Tetrahedron Letters</i> , 2019 , 60, 916-919	2	11
162	Photoredox/Cobalt-Catalyzed C(sp)-H Bond Functionalization toward Phenanthrene Skeletons with Hydrogen Evolution. <i>Organic Letters</i> , 2020 , 22, 9627-9632	6.2	11
161	A Polyoxochromate Templated 56-Nuclei Silver Nanocluster. <i>Inorganic Chemistry</i> , 2020 , 59, 3004-3011	5.1	11
160	Iron(II) hydrides bearing a tetradentate PSNP ligand. <i>Chinese Chemical Letters</i> , 2018 , 29, 949-953	8.1	11
159	Formation of cubane-like photodimers from 2-naphthalenecarbonitrile. <i>Journal of Organic Chemistry</i> , 2008 , 73, 7345-8	4.2	11
158	CH?Pt(II) interaction-controlled self-assembly and photophysics of chiral bis(pyrrol-2-ylmethyleneamino)cyclohexane platinum(II) complexes. <i>Tetrahedron</i> , 2008 , 64, 5577-5582	2.4	11
157	Stereochemistry of a cubane-like photodimer of methyl 2-naphthoate. <i>Tetrahedron Letters</i> , 2006 , 47, 4725-4727	2	11
156	Precise Implantation of an Archimedean Ag@Cu Cuboctahedron into a Platonic CuBis(diphenylphosphino)hexane Tetrahedron. <i>ACS Nano</i> , 2021 , 15, 8733-8741	16.7	11
155	Modular Synthesis of EQuaternary Chiral Lactams by a Synergistic Copper/Palladium-Catalyzed Multicomponent Reaction. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13814-13818	16.4	11
154	IronBobalt-catalyzed heterotrimerization of alkynes and nitriles to polyfunctionalized pyridines. <i>Organic Chemistry Frontiers</i> , 2020 , 7, 2196-2201	5.2	10
153	Borylation of Diazonium Salts by Highly Emissive and Crystalline Carbon Dots in Water. <i>ChemSusChem</i> , 2020 , 13, 1715-1719	8.3	10
152	Modular Design of Poly(norbornenes) for Organelle-Specific Imaging in Tumor Cells. <i>Biomacromolecules</i> , 2016 , 17, 538-45	6.9	10
151	Tetrathiafulvalene derivatives bearing a crown ether with intramolecular charge transfer properties: synthesis and cation binding studies. <i>New Journal of Chemistry</i> , 2009 , 33, 813	3.6	10
150	Remote Activation of the Quadricyclane Group in a QuadricyclaneBteroid[Dibenzoylmethanatoboron Difluoride] System by Intramolecular Electron Transfer[] <i>Journal of Physical Chemistry A</i> , 2003 , 107, 3438-3442	2.8	10
149	Photoredox Oxo-C(sp)-H Bond Functionalization via in Situ Cu(I)-Acetylide Catalysis. <i>Organic Letters</i> , 2020 , 22, 832-836	6.2	10
148	Binding Modes of Salicylic Acids to Titanium Oxide Molecular Surfaces. <i>Chemistry - A European Journal</i> , 2020 , 26, 2666-2674	4.8	10
147	Controllable Synthesis of Ultrathin Transition-Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction. <i>Angewandte Chemie</i> , 2016 , 128, 2207-2210	3.6	10
146	Modification of colloidal particles by unidirectional silica deposition for urchin-like morphologies. <i>RSC Advances</i> , 2016 , 6, 32956-32959	3.7	10

145	New Class of Hydrido Iron(II) Compounds with cis-Reactive Sites: Combination of Iron and Diphosphinodithio Ligand. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 2271-7	4.5	9
144	Bidirectional Singlet and Triplet Energy Transfer via the 2-Ureido-4[1H]-pyrimidinone Quadruple Hydrogen-Bonded Module. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 16507-16515	3.8	9
143	Hexadecanuclear MnMn Molecular Torus Built from Tandem Ligand Transformations. <i>Inorganic Chemistry</i> , 2019 , 58, 14331-14337	5.1	9
142	Off-resonant optical nonlinearities of phthalocyanine analogues: dihydroxy phosphorus(V) tetrabenzotriazacorroles. <i>Optics Communications</i> , 2008 , 281, 1275-1279	2	9
141	In Situ Capture of a Ternary Supramolecular Cluster in a 58-Nuclei Silver Supertetrahedron. <i>CCS Chemistry</i> ,1-16	7.2	9
140	Toward Controlled Syntheses of Diphosphine-Protected Homochiral Gold Nanoclusters through Precursor Engineering. <i>ACS Nano</i> , 2021 , 15, 16019-16029	16.7	9
139	Amphiphilic Oxo-Bridged Ruthenium "Green Dimer" for Water Oxidation. <i>IScience</i> , 2020 , 23, 100969	6.1	8
138	Cobaloxime Catalysis for Enamine Phosphorylation with Hydrogen Evolution. <i>Organic Letters</i> , 2020 , 22, 5385-5389	6.2	8
137	Self-assembled inorganic clusters of semiconducting quantum dots for effective solar hydrogen evolution. <i>Chemical Communications</i> , 2018 , 54, 4858-4861	5.8	8
136	Synthesis of benzannulated spiroketals with gold-catalyzed cycloisomerization/spiroketalization cascade. <i>Organic Chemistry Frontiers</i> , 2018 , 5, 990-993	5.2	8
135	Luminescence-Tunable Polynorbornenes for Simultaneous Multicolor Imaging in Subcellular Organelles. <i>Biomacromolecules</i> , 2018 , 19, 2750-2758	6.9	8
134	Functionalization of Titanium Oxide Cluster Ti O (O C H) with Catechols: Structures and Ligand-Exchange Reactivities. <i>Chemistry - A European Journal</i> , 2019 , 25, 14843-14849	4.8	8
133	Diastereodifferentiating photodimerization of alkyl 2-naphthoates with chiral auxiliaries. <i>Tetrahedron Letters</i> , 2009 , 50, 4965-4968	2	8
132	Nafion-induced metal-metal interactions in a platinum(II) terpyridyl acetylide complex: A luminescent sensor for detection of volatile organic compounds. <i>Chinese Journal of Chemistry</i> , 2010 , 22, 1204-1207	4.9	8
131	Intramolecular triplet energy transfer in donor-acceptor molecules linked by a crown ether bridge. <i>Chemistry - A European Journal</i> , 2006 , 12, 5238-45	4.8	8
130	Carbon Nanoframes: Well-Dispersed ZIF-Derived Co,N-Co-doped Carbon Nanoframes through Mesoporous-Silica-Protected Calcination as Efficient Oxygen Reduction Electrocatalysts (Adv. Mater. 8/2016). <i>Advanced Materials</i> , 2016 , 28, 1712-1712	24	8
129	Construction of Cyclobutanes by Multicomponent Cascade Reactions in Homogeneous Solution through Visible-Light Catalysis. <i>Chemistry - A European Journal</i> , 2019 , 25, 879-884	4.8	8
128	Aerobic oxidation of toluene and benzyl alcohol to benzaldehyde using a visible light-responsive titanium-oxide cluster. <i>Chemical Engineering Journal</i> , 2021 , 404, 126433	14.7	8

127	Cobalt-catalyzed radical cyclization of isocyanides forming phenanthridine derivatives. <i>Organic Chemistry Frontiers</i> , 2018 , 5, 2997-3002	5.2	8	
126	Photocatalysis: Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution (Adv. Mater. 16/2017). <i>Advanced Materials</i> , 2017 , 29,	24	7	
125	Visible-Light-Triggered Selective Intermolecular [2+2] Cycloaddition of Extended Enones: 2-Oxo-3-enoates and 2,4-Dien-1-ones with Olefins. <i>Journal of Organic Chemistry</i> , 2019 , 84, 9257-9269	4.2	7	
124	Visible-Light-Induced Nanoparticle Assembly for Effective Hydrogen Photogeneration. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 7286-7293	8.3	7	
123	BNN-1,3-dipoles: isolation and intramolecular cycloaddition with unactivated arenes. <i>Chemical Science</i> , 2020 , 11, 7053-7059	9.4	7	
122	Kinetically Controlled Radical Addition/Elimination Cascade: From Alkynyl Aziridine to Fluorinated Allenes. <i>Organic Letters</i> , 2020 , 22, 2419-2424	6.2	7	
121	Efficient electronic communication-driven photoinduced charge-separation in 2-ureido-4[1H]-pyrimidinone quadruple hydrogen-bonded N,N-dimethylaniline-anthracene assemblies. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2018 , 355, 457-466	4.7	7	
120	Synthetic [NiFe] models with a fluxional CO ligand. <i>Dalton Transactions</i> , 2017 , 46, 13681-13685	4.3	7	
119	Supramolecular complexation and photocyclodimerization of methyl 3-methoxy-2-naphthoate with modified Ecyclodextrins. <i>Pure and Applied Chemistry</i> , 2011 , 83, 769-778	2.1	7	
118	A simple, modular synthesis of bifunctional peptide-polynorbornenes for apoptosis induction and fluorescence imaging of cancer cells. <i>Polymer Chemistry</i> , 2018 , 9, 77-86	4.9	7	
117	Benzyl CID and CIN Bond Construction via CII Bond Dissociation of Oxime Ester under Visible Light Irradiation. <i>European Journal of Organic Chemistry</i> , 2020 , 2020, 1551-1558	3.2	7	
116	Solution behavior and magnetic properties of a novel nonanuclear copper(II) cluster. <i>New Journal of Chemistry</i> , 2018 , 42, 17884-17888	3.6	7	
115	Direct, Site-Selective and Redox-Neutral EC-H Bond Functionalization of Tetrahydrofurans via Quantum Dots Photocatalysis. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	7	
114	Direct 1,2-Dicarbonylation of Alkenes towards 1,4-Diketones via Photocatalysis. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26822-26828	16.4	7	
113	Preparation of Porous TiO2 from an Iso-Polyoxotitanate Cluster for Rechargeable Sodium-Ion Batteries with High Performance. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 7025-7032	3.8	6	
112	Alkali Halide Cubic Cluster Anions ([CsX], X = Cl, Br) Isolated from Water. <i>Inorganic Chemistry</i> , 2016 , 55, 11125-11130	5.1	6	
111	Switchable two-photon imaging of RGD-functionalized polynorbornenes with enhanced cellular uptake in living cells. <i>New Journal of Chemistry</i> , 2016 , 40, 3252-3260	3.6	6	
110	A modular designed copolymer with anti-thrombotic activity and imaging capability. <i>Chemical Communications</i> , 2014 , 50, 9539-42	5.8	6	

109	Innentitelbild: Graphene-Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions (Angew. Chem. 1/2014). <i>Angewandte Chemie</i> , 2014 , 126, 2-2	3.6	6
108	Light-driven hydrogen evolution system with glutamic-acid-modified zinc porphyrin as photosensitizer and [FeFe]-hydrogenase model as catalyst. <i>Pure and Applied Chemistry</i> , 2013 , 85, 1405-1	4 1 3	6
107	Photochemical DNA cleavage by novel water-soluble sulfonated dihydroxy phosphorus(V) tetrabenzotriazacorrole. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2008 , 18, 2152-5	2.9	6
106	Modification of Alkylbetaine by Incorporation of Hydroxypropyl Group: Preparation, Surface Activity, and Biodegradability of N-Alkoxy-Hydroxypropyl-N, N-Dimethyl-Glycine Betaine Surfactants. <i>Journal of Dispersion Science and Technology</i> , 1998 , 19, 63-76	1.5	6
105	Rational Design of Dot-on-Rod Nano-Heterostructure for Photocatalytic CO Reduction: Pivotal Role of Hole Transfer and Utilization. <i>Advanced Materials</i> , 2021 , e2106662	24	6
104	Identifying a Real Catalyst of [NiFe]-Hydrogenase Mimic for Exceptional H Photogeneration. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18400-18404	16.4	6
103	Surface-Enhanced Raman Scattering of Phenols and Catechols by a Molecular Analogue of Titanium Dioxide. <i>Analytical Chemistry</i> , 2020 , 92, 5929-5936	7.8	6
102	Tandem photoelectrochemical and photoredox catalysis for efficient and selective aryl halides functionalization by solar energy. <i>Matter</i> , 2021 , 4, 2354-2366	12.7	6
101	A 34-Electron Superatom Ag78 Cluster with Regioselective Ternary Ligands Shells and Its 2D Rhombic Superlattice Assembly. <i>Angewandte Chemie</i> , 2021 , 133, 4277-4283	3.6	6
100	A beryllium-selective microcantilever sensor modified with benzo-9-crown-3 functionalized polymer brushes. <i>Analytical Methods</i> , 2017 , 9, 3356-3360	3.2	5
99	Filamentous Virus Oriented Pyrene Excimer Emission and Its Efficient Energy Transfer. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2018 , 355, 32-37	4.7	5
98	Thiolate-Mediated Photoinduced Synthesis of Ultrafine Ag2S Quantum Dots from Silver Nanoparticles. <i>Angewandte Chemie</i> , 2016 , 128, 15176-15181	3.6	5
97	Stereoselective photodimerization of alkyl 3-alkoxyl-2-naphthoates. <i>Tetrahedron Letters</i> , 2011 , 52, 2946	5-22949	5
96	Synthesis of Diazacrown Ethers with Chromophores and Their Photoinduced Charge-Separation with Methyl Viologen. <i>Chinese Journal of Chemistry</i> , 2010 , 19, 960-965	4.9	5
95	The first intramolecular charge transfer transition based on 2-ureido-4[1 H]-pyrimidinone binding module. <i>Chinese Journal of Chemistry</i> , 2010 , 22, 1391-1394	4.9	5
94	Photocontrollable ion transport across a liquid membrane by anthracene end-labeled oligo-oxyethylenes. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 4030-4035	3.6	5
93	Fluorescence Enhancement and Photostability of Novel Pentamethine Cyanines in Nafion-Na+Membranes. <i>Journal of Fluorescence</i> , 2000 , 10, 21-26	2.4	5
92	Iron-Catalyzed Regiodivergent Hydrostannation of Alkynes: Intermediacy of Fe(IV)-H versus Fe(II)-Vinylidene. <i>Journal of the American Chemical Society</i> , 2021 , 143, 409-419	16.4	5

(2021-2020)

91	Monochromophore-Based Phosphorescence and Fluorescence from Pure Organic Assemblies for Ratiometric Hypoxia Detection. <i>Angewandte Chemie</i> , 2020 , 132, 23662-23666	3.6	5	
90	Nitrogenase inspired artificial photosynthetic nitrogen fixation. <i>CheM</i> , 2021 , 7, 1431-1450	16.2	5	
89	Anionic passivation layer-assisted trapping of an icosahedral Ag13 kernel in a truncated tetrahedral Ag89 nanocluster. <i>Science China Chemistry</i> , 2021 , 64, 1482-1486	7.9	5	
88	Multiple-State Emissions from Neat, Single-Component Molecular Solids: Suppression of Kasha's Rule. <i>Angewandte Chemie</i> , 2020 , 132, 10259-10264	3.6	4	
87	Synthetic [FeFe]-H2ase models bearing phosphino thioether chelating ligands. <i>Chinese Chemical Letters</i> , 2018 , 29, 1651-1655	8.1	4	
86	Photothermal Catalysis: Co-Based Catalysts Derived from Layered-Double-Hydroxide Nanosheets for the Photothermal Production of Light Olefins (Adv. Mater. 31/2018). <i>Advanced Materials</i> , 2018 , 30, 1870230	24	4	
85	Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol. <i>Organometallics</i> , 2017 , 36, 3135-3141	3.8	4	
84	Synthesis, Characterization, and Selective Sr2+ Sensing Study of Copper(I)-Bridged Calix[4]arene-Based Binuclear Alkynylplatinum(II) Complexes. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 5108-5113	2.3	4	
83	Zinc-Air Batteries: NiFe Layered Double Hydroxide Nanoparticles on Co,N-Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable ZincAir Batteries (Adv. Energy Materials, 2017, 7,	21.8	4	
82	Ultrahydrophobicity of Polydimethylsiloxanes-Based Multilayered Thin Films. <i>Journal of Nanotechnology</i> , 2009 , 2009, 1-8	3.5	4	
81	Selective Transport of Alkali-Metal Cations through Liquid Membranes by Non-Cyclic Carriers. <i>Chinese Journal of Chemistry</i> , 2010 , 20, 90-95	4.9	4	
80	Metal Ion Enhanced Phosphorescence of 2,3-Naphtho-10-aza-15-crown-5: A Possible Molecular Photonic Operator. <i>Chinese Journal of Chemistry</i> , 2010 , 20, 135-141	4.9	4	
79	Self-assembly of a nonanuclear Ni cluster via atmospheric CO fixation: synthesis, structure, collision-induced dissociation mass spectrometry and magnetic property. <i>Dalton Transactions</i> , 2020 , 49, 10977-10982	4.3	4	
78	S-Trifluoroethyl Benzenesulfonothioate: A Bench-Stable Reagent for Electrophilic Trifluoroethylthiolation <i>Chinese Journal of Chemistry</i> , 2020 , 38, 1625-1628	4.9	4	
77	Hand-in-hand quantum dot assembly sensitized photocathodes for enhanced photoelectrochemical hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 26098-26104	13	4	
76	Self-Assembly of A Novel Ag48 Cluster Encapsulating an Unprecedented [Mo8O28]8[Anion Template. <i>Israel Journal of Chemistry</i> , 2019 , 59, 280-285	3.4	4	
75	Reactivity of the diphosphinodithio ligated nickel(0) complex toward alkyl halides and resultant nickel(i) and nickel(ii)-alkyl complexes. <i>Dalton Transactions</i> , 2018 , 47, 15757-15764	4.3	4	
74	A Carbonate-Templated Decanuclear Mn Nanocage with Two Different Silsesquioxane Ligands. <i>Inorganic Chemistry</i> , 2021 , 60, 14866-14871	5.1	4	

73	Mechanistic Insights Into Iron(II) Bis(pyridyl)amine-Bipyridine Skeleton for Selective CO Photoreduction. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26072-26079	16.4	4
72	Cobalt-Catalyzed Selective Dearomatization of Pyridines to NH 1,4-Dihydropyridines. <i>ACS Catalysis</i> ,501	3 <u>15</u> ,0121	4
71	Heteronuclear assembly of Nitu dithiolato complexes: synthesis, structures, and reactivity studies. <i>Inorganic Chemistry Frontiers</i> , 2017 , 4, 706-711	6.8	3
70	Photocatalytic hydrogen evolution of 1-tetralones to Haphthols by continuous-flow technology. <i>Catalysis Science and Technology</i> , 2019 , 9, 3337-3341	5.5	3
69	Preparation and enhanced catalytic activity of amphiphilic rambutan-like micro-reactors. <i>RSC Advances</i> , 2015 , 5, 74362-74365	3.7	3
68	Effects of organic ammonium cations on the isolation of {Ti} cyclic clusters from water: an O NMR study. <i>Dalton Transactions</i> , 2020 , 49, 5957-5964	4.3	3
67	Sensitized Photocathodes: Recent Advances in Sensitized Photocathodes: From Molecular Dyes to Semiconducting Quantum Dots (Adv. Sci. 4/2018). <i>Advanced Science</i> , 2018 , 5, 1870023	13.6	3
66	Solution-processable graphenes by covalent functionalization of graphene oxide with polymeric monoamines. <i>Science China Chemistry</i> , 2016 , 59, 1018-1024	7.9	3
65	Synthesis of diastereometrically pure cubane-like photodimers from 2,4-pentanediyl-bis-2-naphthoates. <i>Photochemical and Photobiological Sciences</i> , 2014 , 13, 261-5	4.2	3
64	Energy transfer of ionic dyes in mixed surfactant vesicle. <i>Research on Chemical Intermediates</i> , 2000 , 26, 575-585	2.8	3
63	Observation of a bcc-like framework in polyhydrido copper nanoclusters. <i>Nanoscale</i> , 2021 , 13, 19642-19	649	3
62	Direct C-H Thiolation for Selective Cross-Coupling of Arenes with Thiophenols via Aerobic Visible-Light Catalysis. <i>Organic Letters</i> , 2021 , 23, 8082-8087	6.2	3
61	Ultrafast Vibrational Energy Transfer through the Covalent Bond and Intra- and Intermolecular Hydrogen Bonds in a Supramolecular Dimer by Two-Dimensional Infrared Spectroscopy. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 544-555	3.4	3
60	Ambient Chemical Fixation of CO2 Using a Robust Ag27 Cluster-Based Two-Dimensional Metall Drganic Framework. <i>Angewandte Chemie</i> , 2020 , 132, 20206-20211	3.6	3
59	Bioinspired metal complexes for energy-related photocatalytic small molecule transformation. <i>Chemical Communications</i> , 2020 , 56, 15496-15512	5.8	3
58	Hydrogen Evolution: CdS Nanoparticle-Decorated Cd Nanosheets for Efficient Visible Light-Driven Photocatalytic Hydrogen Evolution (Adv. Energy Mater. 3/2016). <i>Advanced Energy Materials</i> , 2016 , 6,	21.8	3
57	Catalytic Hydrogen Production Using A Cobalt Catalyst Bearing a Phosphinoamine Ligand. <i>ChemPhotoChem</i> , 2019 , 3, 220-224	3.3	3
56	Per-6-Thiol-Cyclodextrin Engineered [FeFe]-Hydrogenase Mimic/CdSe Quantum Dot Assembly for Photocatalytic Hydrogen Production. <i>Solar Rrl</i> , 2021 , 5, 2000474	7.1	3

55	Site-selective DO-mediated deuteration of diaryl alcohols via quantum dots photocatalysis. <i>Chemical Communications</i> , 2021 , 57, 6768-6771	5.8	3
54	Dehydrogenation of iron amido-borane and resaturation of the imino-borane complex. <i>Chemical Science</i> , 2021 , 12, 2885-2889	9.4	3
53	Tandem [2 + 2] Cycloaddition/Rearrangement toward Carbazoles by Visible-Light Photocatalysis. <i>Organic Letters</i> , 2021 , 23, 2135-2139	6.2	3
52	Keplerate Ag Cluster with 6 Silver and 14 Chalcogenide Octahedral and Tetrahedral Shells. <i>Journal of the American Chemical Society</i> , 2021 , 143, 13235-13244	16.4	3
51	An advanced plasmonic photocatalyst containing silver(0) single atoms for selective borylation of aryl iodides. <i>Applied Catalysis B: Environmental</i> , 2021 , 299, 120674	21.8	3
50	N-lodosuccinimide and dioxygen in an air-enabled synthesis of 10-phenanthrenols under sunlight. <i>Green Chemistry</i> , 2021 , 23, 7193-7198	10	3
49	Janus Cluster: Asymmetric Coverage of a Ag43 Cluster on the Symmetric Preyssler P5W30 Polyoxometalate. <i>Chemistry of Materials</i> , 2021 , 33, 9708-9714	9.6	3
48	Keggin-Type Tridecanuclear Europium-Oxo Nanocluster Protected by Silsesquioxanes. <i>Chemistry of Materials</i> , 2022 , 34, 4186-4194	9.6	3
47	Reductive Coupling of Bridging Diaryl Ligands in Half-Sandwich Cobalt(II) Dimers: Revisiting Triple-Decker Cobalt(I) Complexes. <i>Organometallics</i> , 2019 , 38, 3610-3616	3.8	2
46	Photothermal CO2 Hydrogenation: Alumina-Supported CoFe Alloy Catalysts Derived from Layered-Double-Hydroxide Nanosheets for Efficient Photothermal CO2 Hydrogenation to Hydrocarbons (Adv. Mater. 3/2018). <i>Advanced Materials</i> , 2018 , 30, 1870015	24	2
45	Water Splitting: Ni3FeN Nanoparticles Derived from Ultrathin NiFe-Layered Double Hydroxide Nanosheets: An Efficient Overall Water Splitting Electrocatalyst (Adv. Energy Mater. 10/2016). <i>Advanced Energy Materials</i> , 2016 , 6,	21.8	2
44	Semi-artificial photoelectrochemical synthesis. <i>Joule</i> , 2021 , 5, 2771-2773	27.8	2
43	Conformation-Controlled Diplatinum(II)-Ferrocene Dyads to Achieve Long-Lived Charge-Separated States. <i>Chemistry - A European Journal</i> , 2016 , 22, 11962-6	4.8	2
42	Chiral Inductions in Excited State Reactions: Photodimerization of Alkyl 2-Naphthoates as a Model. <i>Photochemistry and Photobiology</i> , 2019 , 95, 24-32	3.6	2
41	Hole-Transfer-Layer Modification of Quantum Dot-Sensitized Photocathodes for Dramatically Enhanced Hydrogen Evolution. <i>Particle and Particle Systems Characterization</i> , 2018 , 35, 1700278	3.1	2
40	Chemo- and Regioselective Synthesis of Alkynyl Cyclobutanes by Visible Light Photocatalysis. <i>Organic Letters</i> , 2018 , 20, 6808-6811	6.2	2
39	A Simple Strategy to Construct Amorphous Metal-Free Room Temperature Phosphorescent and Multi-Color Materials. <i>ChemPhysChem</i> , 2018 , 19, 2131-2133	3.2	2
38	Palladium-Catalyzed Desymmetric Intermolecular C-N Coupling Enabled by a Chiral Monophosphine Ligand Derived from Anthracene Photodimer. <i>Organic Letters</i> , 2021 , 23, 5485-5490	6.2	2

37	Core engineering of paired core-shell silver nanoclusters. Science China Chemistry,1	7.9	2
36	Probe Binding Mode and Structure of the Photocatalytic Center: Hydrogen Generation by Quantum Dots and Nickel Ions. <i>Energy & Fuels</i> ,	4.1	2
35	Nuclearity enlargement from [PWO@Ag] to [(PWO)@Ag] and 2D and 3D network formation driven by bipyridines <i>Nature Communications</i> , 2022 , 13, 1802	17.4	2
34	Catalysts: NakedIMagnetically Recyclable Mesoporous AuFe2O3 Nanocrystal Clusters: A Highly Integrated Catalyst System (Adv. Funct. Mater. 9/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	1
33	Tunable amplified spontaneous emission based on liquid magnetically responsive photonic crystals. Journal of Materials Chemistry C, 2019 , 7, 3740-3743	7.1	1
32	Self-assembled vesicles from amphiphilic platinum(II) terpyridyl complex in water. <i>Supramolecular Chemistry</i> , 2015 , 27, 298-302	1.8	1
31	Epitaxial growth of bulky calcite inverse opal induced by a single crystalline calcite substrate. <i>CrystEngComm</i> , 2014 , 16, 7617	3.3	1
30	Photocatalysts: Layered-Double-Hydroxide Nanosheets as Efficient Visible-Light-Driven Photocatalysts for Dinitrogen Fixation (Adv. Mater. 42/2017). <i>Advanced Materials</i> , 2017 , 29,	24	1
29	Photocatalysis: An Exceptional Artificial Photocatalyst, Nih-CdSe/CdS Core/Shell Hybrid, Made In Situ from CdSe Quantum Dots and Nickel Salts for Efficient Hydrogen Evolution (Adv. Mater. 45/2013). Advanced Materials, 2013 , 25, 6634-6634	24	1
28	Magnetic field effects on photochemical reaction III. Mechanistic study of the photodecarboxylation of arylmethyl esters in micellar solutions. <i>Chinese Journal of Chemistry</i> , 2010 , 9, 552-558	4.9	1
27	Enhancement of intramolecular excimer formation and photodimerization of anthrylmethyl Halkanedioates via hydrophobic interactions. <i>Chinese Journal of Chemistry</i> , 2010 , 13, 532-538	4.9	1
26	Novel photo-induced coupling reactions of 9-fluorenylidene-malononitrile or 1,1-diphenyl-2,2-dicyanoethylene with 10-methyl-9,10-dihydroacridine. A study on the photophysics of the reaction. <i>Chinese Journal of Chemistry</i> , 2010 , 21, 1400-1402	4.9	1
25	Site-Selective N-1 and C-3 Heteroarylation of Indole with Het-eroarylnitriles by Organocatalysis under Visible Light <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	1
24	Adsorptive separation of cyclohexanol and cyclohexanone by nonporous adaptive crystals of RhombicArene <i>Chemical Science</i> , 2021 , 12, 15528-15532	9.4	1
23	Facile Access to Alkylideneborane and Diborabutadiene N-Heterocyclic Carbene Complexes. <i>Inorganic Chemistry</i> , 2021 , 60, 8432-8436	5.1	1
22	Silica-supported dual-dye nanoprobes for ratiometric hypoxia sensing. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 458-464	7.8	1
21	Construction of Crystalline One-Dimensional Infinite Argentophilic Silver Alkynyl Assemblies and their Luminescence Properties. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 5068-5074	2.3	1
20	Boraiminolithium: An Iminoborane-Transfer Reagent. <i>Journal of the American Chemical Society</i> , 2021 , 143, 13483-13488	16.4	1

19	Engaging Ag(0) single atoms in silver(I) salts-mediated C-B and C-S coupling under visible light irradiation. <i>Journal of Catalysis</i> , 2021 , 402, 255-263	7.3	1
18	Unraveling the reactivity of a cationic iminoborane: avenues to unusual boron cations <i>Chemical Science</i> , 2022 , 13, 2303-2309	9.4	O
17	Synthesis of Finite Molecular Nanotubes by Connecting Axially Functionalized Macrocycles. <i>CCS Chemistry</i> ,1-9	7.2	0
16	Thermally Hypsochromic or Bathochromic Emissions? The Silver Nuclei Does Matter. <i>Small</i> , 2021 , e2104	5 <u>2</u> 4	O
15	Insertion of BH3 into a CobaltAryl Bond: Synthetic Routes to Arylborohydride and Borane-Amino Hydride Complexes. <i>Organometallics</i> , 2021 , 40, 1692-1698	3.8	O
14	Incorporation of HO and CO into a BN-embedded 3-3-acephenanthrylene derivative. <i>Chemical Communications</i> , 2021 , 57, 1226-1229	5.8	Ο
13	Assembly of Interlocked Superstructures with a Titanium Oxide Molecular Ring in Water. <i>Inorganic Chemistry</i> , 2021 , 60, 14520-14524	5.1	О
12	Structural rearrangement of Ag nanocluster endowing different luminescence performances <i>Journal of Chemical Physics</i> , 2021 , 155, 234303	3.9	O
11	A Photochemical Route towards Metal Sulfide Nanosheets from Layered Metal Thiolate Complexes. <i>Angewandte Chemie</i> , 2019 , 131, 8531	3.6	
10	Superhydrophilic Graphdiyne: Superhydrophilic Graphdiyne Accelerates Interfacial Mass/Electron Transportation to Boost Electrocatalytic and Photoelectrocatalytic Water Oxidation Activity (Adv. Funct. Mater. 16/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970107	15.6	
9	Innentitelbild: Core Modulation of 70-Nuclei Core-Shell Silver Nanoclusters (Angew. Chem. 19/2019). <i>Angewandte Chemie</i> , 2019 , 131, 6168-6168	3.6	
8	Hydrogen Bonding-Controlled Photoinduced Electron and Energy Transfer. <i>Lecture Notes in Quantum Chemistry II</i> , 2015 , 1-42	0.6	
7	Innentitelbild: Multiple-State Emissions from Neat, Single-Component Molecular Solids: Suppression of Kasha's Rule (Angew. Chem. 25/2020). <i>Angewandte Chemie</i> , 2020 , 132, 9870-9870	3.6	
6	Nanoparticles: Spontaneous Organization of Inorganic Nanoparticles into Nanovesicles Triggered by UV Light (Adv. Mater. 32/2014). <i>Advanced Materials</i> , 2014 , 26, 5731-5731	24	
5	Supramolecular Organic Chemistry: The Foldamer Approach 2012 , 477-535		
4	Semiconductor photoinduced cycloreversion of the dimer of methyl 2-naphthoate. <i>Chinese Journal of Chemistry</i> , 2010 , 15, 260-264	4.9	
3	Cobalt-catalyzed regioselective hydrohydrazination of epoxides. <i>Organic and Biomolecular Chemistry</i> , 2020 , 18, 1572-1576	3.9	
2	REktitelbild: Controllable Synthesis of Ultrathin Transition-Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction (Angew. Chem. 6/2016). <i>Angewandte Chemie</i> , 2016 , 128, 2316-2316	3.6	

Biosensing: A Hydrogen-Bonded-Supramolecular-Polymer-Based Nanoprobe for Ratiometric Oxygen Sensing in Living Cells (Adv. Funct. Mater. 30/2016). *Advanced Functional Materials*, **2016**, 26, 5580-5580

15.6