
Xiaosong Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2394316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hostâ€Dopant Interaction between Organic Thermally Activated Delayed Fluorescence Emitter and Host Material: Insight into the Excited State. Advanced Optical Materials, 2022, 10, 2101343.	7.3	16
2	Chiral thermally activated delayed fluorescence emitters for circularly polarized luminescence and efficient deep blue OLEDs. Dyes and Pigments, 2022, 197, 109860.	3.7	10
3	Quenchingâ€Resistant Multiresonance TADF Emitter Realizes 40% External Quantum Efficiency in Narrowband Electroluminescence at High Doping Level. Advanced Materials, 2022, 34, e2106954.	21.0	235
4	High-efficiency and low roll-off deep-blue OLEDs enabled by thermally activated delayed fluorescence emitter with preferred horizontal dipole orientation. Chemical Engineering Journal, 2022, 433, 133598.	12.7	21
5	Molecular Engineering Enables TADF Emitters Well Suitable for Nonâ€Doped OLEDs with External Quantum Efficiency of Nearly 30%. Advanced Functional Materials, 2022, 32, .	14.9	32
6	Simple Molecular Design Strategy for Multiresonance Induced TADF Emitter: Highly Efficient Deep Blue to Blue Electroluminescence with High Color Purity. Advanced Optical Materials, 2022, 10, .	7.3	42
7	Extending the Ï€â€Skeleton of Multiâ€Resonance TADF Materials towards Highâ€Efficiency Narrowband Deepâ€Blue Emission. Angewandte Chemie, 2022, 134, .	2.0	25
8	Chiral Multiâ€Resonance TADF Emitters Exhibiting Narrowband Circularly Polarized Electroluminescence with an EQE of 37.2 %. Angewandte Chemie - International Edition, 2022, 61, .	13.8	58
9	Chiral Multiâ€Resonance TADF Emitters Exhibiting Narrowband Circularly Polarized Electroluminescence with an EQE of 37.2 %. Angewandte Chemie, 2022, 134, .	2.0	16
10	Sulfoneâ€Incorporated Multiâ€Resonance TADF Emitter for Highâ€Performance Narrowband Blue OLEDs with EQE of 32%. Advanced Functional Materials, 2022, 32, .	14.9	53
11	Extending the π‧keleton of Multiâ€Resonance TADF Materials towards Highâ€Efficiency Narrowband Deepâ€Blue Emission. Angewandte Chemie - International Edition, 2022, 61, .	13.8	110
12	Highâ€Performance Narrowband Pureâ€Red OLEDs with External Quantum Efficiencies up to 36.1% and Ultralow Efficiency Rollâ€Off. Advanced Materials, 2022, 34, e2201442.	21.0	131
13	Integrating molecular rigidity and chirality into thermally activated delayed fluorescence emitters for highly efficient sky-blue and orange circularly polarized electroluminescence. Materials Horizons, 2021, 8, 547-555.	12.2	76
14	Triplet–triplet annihilation upconversion with reversible emission-tunability induced by chemical-stimuli: a remote modulator for photocontrol isomerization. Materials Horizons, 2021, 8, 606-611.	12.2	15
15	Multi-resonance organoboron-based fluorescent probe for ultra-sensitive, selective and reversible detection of fluoride ions. Journal of Materials Chemistry C, 2021, 9, 1567-1571.	5.5	19
16	Color-tunable tetracoordinated organoboron complexes exhibiting aggregation-induced emission for the efficient turn-on detection of fluoride ions. Materials Chemistry Frontiers, 2021, 5, 2353-2360.	5.9	9
17	High-Efficiency Red Electroluminescence Based on a Carbene–Cu(I)–Acridine Complex. ACS Applied Materials & Interfaces, 2021, 13, 13478-13486.	8.0	46
18	Peripheral Decoration of Multiâ€Resonance Molecules as a Versatile Approach for Simultaneous Longâ€Wavelength and Narrowband Emission. Advanced Functional Materials, 2021, 31, 2102017.	14.9	157

XIAOSONG CAO

#	Article	IF	CITATIONS
19	Semitransparent Circularly Polarized Phosphorescent Organic Lightâ€Emitting Diodes with External Quantum Efficiency over 30% and Dissymmetry Factor Close to 10 ^{â^2} . Advanced Functional Materials, 2021, 31, 2102898.	14.9	60
20	On-off switchable thermally activated delayed fluorescence controlled by multiple channels: Understanding the mechanism behind distinctive polymorph-dependent optical properties. Chemical Engineering Journal, 2021, 415, 128909.	12.7	15
21	Phenoxazine-Dibenzothiophene Sulfoximine Emitters Featuring Both Thermally Activated Delayed Fluorescence and Aggregation Induced Emission. Molecules, 2021, 26, 5243.	3.8	4
22	Simple Acridanâ€Based Multiâ€Resonance Structures Enable Highly Efficient Narrowband Green TADF Electroluminescence. Advanced Optical Materials, 2021, 9, 2100825.	7.3	79
23	Heavy-atom effect promotes multi-resonance thermally activated delayed fluorescence. Chemical Engineering Journal, 2021, 426, 131169.	12.7	122
24	Highly efficient red thermally activated delayed fluorescence emitters by manipulating the molecular horizontal orientation. Materials Chemistry Frontiers, 2021, 5, 3209-3215.	5.9	28
25	Narrowing the Electroluminescence Spectra of Multiresonance Emitters for High-Performance Blue OLEDs by a Peripheral Decoration Strategy. ACS Applied Materials & Interfaces, 2021, 13, 59035-59042.	8.0	34
26	Efficient Triplet–Triplet Annihilation Upconversion in Solution and Hydrogel Enabled by an S-T Absorption Os(II) Complex Dyad with an Elongated Triplet Lifetime. Inorganic Chemistry, 2021, 60, 19001-19008.	4.0	15
27	Chainâ€growth polymerization of azide–alkyne difunctional monomer: Synthesis of star polymer with linear polytriazole arms from a core. Journal of Polymer Science, 2020, 58, 84-90.	3.8	6
28	Synthesis and direct assembly of linear–dendritic copolymers <i>via</i> CuAAC click polymerization-induced self-assembly (CPISA). Polymer Chemistry, 2020, 11, 936-943.	3.9	21
29	Recyclable Palladium-Loaded Hyperbranched Polytriazoles as Efficient Polymer Catalysts for Heck Reaction. ACS Applied Polymer Materials, 2020, 2, 677-684.	4.4	11
30	Superacid-catalyzed Friedel–Crafts polyhydroxyalkylation: a straightforward method to construct sky-blue thermally activated delayed fluorescence polymers. Polymer Chemistry, 2020, 11, 3481-3487.	3.9	9
31	Isomerization enhanced quantum yield of dibenzo[<i>a,c</i>]phenazine-based thermally activated delayed fluorescence emitters for highly efficient orange OLEDs. Journal of Materials Chemistry C, 2020, 8, 9639-9645.	5.5	31
32	Synthesis of multisegmented block copolymer by Friedel–Crafts hydroxyalkylation polymerization. Polymer Chemistry, 2020, 11, 2542-2549.	3.9	9
33	Regulating the photophysical properties of highly twisted TADF emitters by concurrent through-space/-bond charge transfer. Chemical Engineering Journal, 2020, 402, 126173.	12.7	49
34	Star-shaped thermally activated delayed fluorescence emitters with a tri-armed arylsulfonic acceptor for efficient solution processed organic light emitting diodes. Journal of Materials Chemistry C, 2020, 8, 5580-5586.	5.5	13
35	Fused tetracyclic tris[1,2,4]triazolo[1,3,5]triazine as a novel rigid electron acceptor for efficient thermally activated delayed fluorescence emitters. RSC Advances, 2020, 10, 15523-15529.	3.6	19
36	AIE-active multicolor tunable luminogens: simultaneous mechanochromism and acidochromism with high contrast beyond 100 nm. Materials Chemistry Frontiers, 2020, 4, 2047-2053.	5.9	55

XIAOSONG CAO

#	Article	IF	CITATIONS
37	Synthesize Hyperbranched Polymers Carrying Two Reactive Handles via CuAAC Reaction and Thiol–Ene Chemistry. Macromolecular Chemistry and Physics, 2019, 220, 1900221.	2.2	4
38	Tandem Functionalization in a Highly Branched Polymer with Layered Structure. Chemistry - A European Journal, 2018, 24, 5974-5981.	3.3	19
39	Highly Branched Polymers with Layered Structures that Mimic Lightâ€Harvesting Processes. Angewandte Chemie, 2018, 130, 525-529.	2.0	17
40	Highly Branched Polymers with Layered Structures that Mimic Lightâ€Harvesting Processes. Angewandte Chemie - International Edition, 2018, 57, 516-520.	13.8	43
41	Ligand effect in the synthesis of hyperbranched polymers via copperâ€catalyzed azideâ€alkyne cycloaddition polymerization (CuAACP). Journal of Polymer Science Part A, 2018, 56, 2238-2244.	2.3	11
42	Tunable Fluorescence from a Responsive Hyperbranched Polymer with Spatially Arranged Fluorophore Arrays. Chemistry - an Asian Journal, 2018, 13, 3723-3728.	3.3	7
43	Friedel–Crafts A ₂ + B ₄ Polycondensation toward Regioselective Linear Polymer with Rigid Triphenylmethane Backbone and Its Property as Gas Separation Membrane. Macromolecules, 2018, 51, 6580-6586.	4.8	24
44	Produce Molecular Brushes with Ultrahigh Grafting Density Using Accelerated CuAAC Grafting-Onto Strategy. Macromolecules, 2017, 50, 215-222.	4.8	46
45	A Novel Chain-Growth CuAAC Polymerization: One-pot Synthesis of Dendritic Hyperbranched Polymers with Well-Defined Structures. Synlett, 2017, 28, 391-396.	1.8	10
46	Synthesis of acid-degradable hyperbranched polymers by chain-growth CuAAC polymerization of an AB ₃ monomer. Polymer Chemistry, 2016, 7, 5512-5517.	3.9	33
47	Preparation of water-soluble hyperbranched polymers with tunable thermosensitivity using chain-growth CuAAC copolymerization. Polymer Chemistry, 2016, 7, 7500-7505.	3.9	14
48	Investigate the Glass Transition Temperature of Hyperbranched Copolymers with Segmented Monomer Sequence. Macromolecules, 2016, 49, 4416-4422.	4.8	35
49	The use of azide–alkyne click chemistry in recent syntheses and applications of polytriazole-based nanostructured polymers. Nanoscale, 2016, 8, 4864-4881.	5.6	88
50	Chainâ€Growth Click Polymerization of AB ₂ Monomers for the Formation of Hyperbranched Polymers with Low Polydispersities in a Oneâ€Pot Process. Angewandte Chemie - International Edition, 2015, 54, 7631-7635.	13.8	138
51	Innentitelbild: Chain-Growth Click Polymerization of AB2Monomers for the Formation of Hyperbranched Polymers with Low Polydispersities in a One-Pot Process (Angew. Chem. 26/2015). Angewandte Chemie, 2015, 127, 7562-7562.	2.0	1