Alessandro Rosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2394237/publications.pdf

Version: 2024-02-01

218592 149623 4,010 62 26 56 h-index citations g-index papers 69 69 69 6517 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Culture of Human iPSC-Derived Motoneurons in Compartmentalized Microfluidic Devices and Quantitative Assays for Studying Axonal Phenotypes. Methods in Molecular Biology, 2022, 2429, 189-199.	0.4	O
2	Upregulation of \hat{l}^2 -catenin due to loss of miR-139 contributes to motor neuron death in amyotrophic lateral sclerosis. Stem Cell Reports, 2022, , .	2.3	9
3	The Aurora-A/TPX2 Axis Directs Spindle Orientation in Adherent Human Cells by Regulating NuMA and Microtubule Stability. Current Biology, 2021, 31, 658-667.e5.	1.8	25
4	PiggyBac vectors in pluripotent stem cell research and applications. , 2021, , 55-78.		0
5	Novel fragile X syndrome 2D and 3D brain models based on human isogenic FMRP-KO iPSCs. Cell Death and Disease, 2021, 12, 498.	2.7	38
6	Small heat-shock protein HSPB3 promotes myogenesis by regulating the lamin B receptor. Cell Death and Disease, 2021, 12, 452.	2.7	16
7	FUS-ALS mutants alter FMRP phase separation equilibrium and impair protein translation. Science Advances, 2021, 7, .	4.7	36
8	Editorial: The RNA Revolution in Embryonic Development and Cell Differentiation in Health and Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 715341.	1.8	1
9	ALS-related FUS mutations alter axon growth in motoneurons and affect HuD/ELAVL4 and FMRP activity. Communications Biology, 2021, 4, 1025.	2.0	21
10	Single-cell transcriptomics identifies master regulators of neurodegeneration in SOD1 ALS iPSC-derived motor neurons. Stem Cell Reports, 2021, 16, 3020-3035.	2.3	14
11	A Computational Approach to Investigate TDP-43 RNA-Recognition Motif 2 C-Terminal Fragments Aggregation in Amyotrophic Lateral Sclerosis. Biomolecules, 2021, 11, 1905.	1.8	5
12	HOTAIRM1 regulates neuronal differentiation by modulating NEUROGENIN 2 and the downstream neurogenic cascade. Cell Death and Disease, 2020, 11, 527.	2.7	28
13	Proteomics analysis of FUS mutant human motoneurons reveals altered regulation of cytoskeleton and other ALS-linked proteins via 3′UTR binding. Scientific Reports, 2020, 10, 11827.	1.6	18
14	High-throughput screening identifies histone deacetylase inhibitors that modulate GTF2I expression in 7q11.23 microduplication autism spectrum disorder patient-derived cortical neurons. Molecular Autism, 2020, 11, 88.	2.6	20
15	Identification of Molecular Signatures in Neural Differentiation and Neurological Diseases Using Digital Color-Coded Molecular Barcoding. Stem Cells International, 2020, 2020, 1-9.	1.2	3
16	Acute conversion of patient-derived Duchenne muscular dystrophy iPSC into myotubes reveals constitutive and inducible over-activation of TGFÎ ² -dependent pro-fibrotic signaling. Skeletal Muscle, 2020, 10, 13.	1.9	25
17	FUS ALS-causative mutations impair FUS autoregulation and splicing factor networks through intron retention. Nucleic Acids Research, 2020, 48, 6889-6905.	6.5	70
18	Excess TPX2 Interferes with Microtubule Disassembly and Nuclei Reformation at Mitotic Exit. Cells, 2020, 9, 374.	1.8	19

#	Article	IF	Citations
19	Establishment of an in Vitro Human Blood-Brain Barrier Model Derived from Induced Pluripotent Stem Cells and Comparison to a Porcine Cell-Based System. Cells, 2020, 9, 994.	1.8	28
20	Transâ€generational epigenetic regulation associated with the amelioration of Duchenne Muscular Dystrophy. EMBO Molecular Medicine, 2020, 12, e12063.	3.3	11
21	Towards intracellular phase transitions in ALS disease by noncontact Brillouin microscopy (Conference Presentation). , 2020, , .		О
22	Construction of 3D in vitro models by bioprinting human pluripotent stem cells: Challenges and opportunities. Brain Research, 2019, 1723, 146393.	1.1	64
23	3D Bioprinted Human Cortical Neural Constructs Derived from Induced Pluripotent Stem Cells. Journal of Clinical Medicine, 2019, 8, 1595.	1.0	43
24	Mutant FUS and ELAVL4 (HuD) Aberrant Crosstalk in Amyotrophic Lateral Sclerosis. Cell Reports, 2019, 27, 3818-3831.e5.	2.9	51
25	Conversion of Human Induced Pluripotent Stem Cells (iPSCs) into Functional Spinal and Cranial Motor Neurons Using PiggyBac Vectors. Journal of Visualized Experiments, 2019, , .	0.2	18
26	Inducible SMARCAL1 knockdown in iPSC reveals a link between replication stress and altered expression of master differentiation genes. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	9
27	Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS. Communications Biology, 2018, 1, 139.	2.0	45
28	Direct conversion of human pluripotent stem cells into cranial motor neurons using a piggyBac vector. Stem Cell Research, 2018, 29, 189-196.	0.3	38
29	Role of MicroRNAs in Zygotic Genome Activation: Modulation of mRNA During Embryogenesis. Methods in Molecular Biology, 2017, 1605, 31-43.	0.4	10
30	Importin beta and CRM1 control a RANBP2 spatiotemporal switch essential for mitotic kinetochore function. Journal of Cell Science, 2017, 130, 2564-2578.	1.2	9
31	FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nature Communications, 2017, 8, 14741.	5.8	403
32	FUS Mutant Human Motoneurons Display Altered Transcriptome and microRNA Pathways with Implications for ALS Pathogenesis. Stem Cell Reports, 2017, 9, 1450-1462.	2.3	77
33	Loss of miR-107, miR-181c and miR-29a-3p Promote Activation of Notch2 Signaling in Pediatric High-Grade Gliomas (pHGGs). International Journal of Molecular Sciences, 2017, 18, 2742.	1.8	19
34	Divergent IncRNAs take the lead on pluripotent cell differentiation. Stem Cell Investigation, 2016, 3, 47-47.	1.3	2
35	Long Noncoding RNA Regulation of Pluripotency. Stem Cells International, 2016, 2016, 1-9.	1.2	64
36	Protein clustering in chemically stressed HeLa cells studied by infrared nanospectroscopy. Nanoscale, 2016, 8, 17560-17567.	2.8	18

#	Article	IF	Citations
37	Differentiation of control and ALS mutant human iPSCs into functional skeletal muscle cells, a tool for the study of neuromuscolar diseases. Stem Cell Research, 2016, 17, 140-147.	0.3	31
38	Mapping the amide I absorption in single bacteria and mammalian cells with resonant infrared nanospectroscopy. Nanotechnology, 2016, 27, 075101.	1.3	51
39	ALS mutant FUS proteins are recruited into stress granules in induced Pluripotent Stem Cells (iPSCs) derived motoneurons. DMM Disease Models and Mechanisms, 2015, 8, 755-66.	1.2	121
40	Enriched environment reduces glioma growth through immune and non-immune mechanisms in mice. Nature Communications, 2015, 6, 6623.	5.8	104
41	Pur-alpha functionally interacts with FUS carrying ALS-associated mutations. Cell Death and Disease, 2015, 6, e1943-e1943.	2.7	26
42	N-terminus-modified Hec1 suppresses tumour growth by interfering with kinetochore–microtubule dynamics. Oncogene, 2015, 34, 3325-3335.	2.6	9
43	miR-373 is regulated by $TGF\hat{l}^2$ signaling and promotes mesendoderm differentiation in human Embryonic Stem Cells. Developmental Biology, 2014, 391, 81-88.	0.9	44
44	Regulatory Non-Coding RNAs in Pluripotent Stem Cells. International Journal of Molecular Sciences, 2013, 14, 14346-14373.	1.8	40
45	Non Coding RNA in Muscle Differentiation and Disease. MicroRNA (Shariqah, United Arab Emirates), 2013, 2, 91-101.	0.6	1
46	FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment. EMBO Journal, 2012, 31, 4502-4510.	3.5	201
47	APOBEC2, a selective inhibitor of TGFβ signaling, regulates left–right axis specification during early embryogenesis. Developmental Biology, 2011, 350, 13-23.	0.9	42
48	A regulatory circuitry comprised of miR-302 and the transcription factors OCT4 and NR2F2 regulates human embryonic stem cell differentiation. EMBO Journal, 2011, 30, 237-248.	3.5	190
49	Synthetic mRNAs: Powerful Tools for Reprogramming and Differentiation of Human Cells. Cell Stem Cell, 2010, 7, 549-550.	5.2	22
50	MicroRNAs in early vertebrate development. Cell Cycle, 2009, 8, 3513-3520.	1.3	62
51	The miR-430/427/302 Family Controls Mesendodermal Fate Specification via Species-Specific Target Selection. Developmental Cell, 2009, 16, 517-527.	3.1	204
52	Role of microRNAs in myeloid differentiation. Biochemical Society Transactions, 2008, 36, 1201-1205.	1.6	19
53	The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19849-19854.	3.3	266
54	Heterochromatic gene repression of the retinoic acid pathway in acute myeloid leukemia. Blood, 2007, 109, 4432-4440.	0.6	82

#	Article	IF	CITATION
55	Emerging Role for MicroRNAs in Acute Promyelocytic Leukemia. , 2007, 313, 73-84.		20
56	Chimeric Adeno-Associated Virus/Antisense U1 Small Nuclear RNA Effectively Rescues Dystrophin Synthesis and Muscle Function by Local Treatment of mdx Mice. Human Gene Therapy, 2006, 17, 565-574.	1.4	45
57	Body-wide gene therapy of Duchenne muscular dystrophy in the mdx mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3758-3763.	3.3	134
58	MicroRNAs and Hematopoietic Differentiation. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 205-210.	2.0	15
59	A Minicircuitry Comprised of MicroRNA-223 and Transcription Factors NFI-A and C/EBPα Regulates Human Granulopoiesis. Cell, 2005, 123, 819-831.	13.5	935
60	A new vector, based on the PollI promoter for the U1 snRNA gene, for the expression of siRNAs in mammalian cells. Molecular Therapy, 2004, 10, 191-199.	3.7	76
61	Mutant FUS and ELAVL4 (HuD) Aberrant Crosstalk in Amyotrophic Lateral Sclerosis. SSRN Electronic Journal, 0, , .	0.4	0
62	The Aurora-A/TPX2 Axis Directs Spindle Orientation by Regulating NuMa and Microtubule Dynamics. SSRN Electronic Journal, 0, , .	0.4	1