List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2393940/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A metal–organic framework-derived bifunctional oxygenÂelectrocatalyst. Nature Energy, 2016, 1, .	19.8	1,974

3	ZnCo ₂ O ₄ Quantum Dots Anchored on Nitrogenâ€Doped Carbon Nanotubes as Reversible Oxygen Reduction/Evolution Electrocatalysts. Advanced Materials, 2016, 28, 3777-3784.	11.1	692
4	Atomic Modulation of FeCo–Nitrogen–Carbon Bifunctional Oxygen Electrodes for Rechargeable and Flexible Allâ€Solidâ€State Zinc–Air Battery. Advanced Energy Materials, 2017, 7, 1602420.	10.2	692
5	Amorphous Ni(OH) ₂ @ three-dimensional Ni core–shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. Journal of Materials Chemistry A, 2014, 2, 13845-13853.	5.2	389
6	Systematic Bandgap Engineering of Graphene Quantum Dots and Applications for Photocatalytic Water Splitting and CO ₂ Reduction. ACS Nano, 2018, 12, 3523-3532.	7.3	341
7	CuCo Bimetallic Oxide Quantum Dot Decorated Nitrogenâ€Doped Carbon Nanotubes: A Highâ€Efficiency Bifunctional Oxygen Electrode for Zn–Air Batteries. Advanced Functional Materials, 2017, 27, 1701833. 	7.8	339
8	Ultrathin NiCo ₂ P _x nanosheets strongly coupled with CNTs as efficient and robust electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 7420-7427.	5.2	302
9	Vertically oriented MoS ₂ and WS ₂ nanosheets directly grown on carbon cloth as efficient and stable 3-dimensional hydrogen-evolving cathodes. Journal of Materials Chemistry A, 2015, 3, 131-135.	5.2	254
10	Accelerated start-up of two-chambered microbial fuel cells: Effect of anodic positive poised potential. Electrochimica Acta, 2009, 54, 1109-1114.	2.6	219
11	Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosensors and Bioelectronics, 2010, 25, 2639-2643.	5.3	214
12	S, N co-doped carbon nanotube-encapsulated core-shelled CoS2@Co nanoparticles: efficient and stable bifunctional catalysts for overall water splitting. Science Bulletin, 2018, 63, 1130-1140.	4.3	202
13	A Porous Perchlorateâ€Doped Polypyrrole Nanocoating on Nickel Nanotube Arrays for Stable Wideâ€Potentialâ€Window Supercapacitors. Advanced Materials, 2016, 28, 7680-7687.	11.1	180
14			
	Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution. Small, 2016, 12, 6735-6744.	5.2	172
15	Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution. Small, 2016, 12, 6735-6744. Double-Shelled CdS- and CdSe-Cosensitized ZnO Porous Nanotube Arrays for Superior Photoelectrocatalytic Applications. ACS Applied Materials & amp; Interfaces, 2015, 7, 16387-16394.	5.2 4.0	172 169
15 16	Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution. Small, 2016, 12, 6735-6744.Double-Shelled CdS- and CdSe-Cosensitized ZnO Porous Nanotube Arrays for Superior Photoelectrocatalytic Applications. ACS Applied Materials & amp; Interfaces, 2015, 7, 16387-16394.g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance. Applied Surface Science, 2015, 358, 296-303.	5.2 4.0 3.1	172 169 154
15 16 17	Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Pouble-Shelled CdS- and CdSe-Cosensitized ZnO Porous Nanotube Arrays for Superior Photoelectrocatalytic Applications. ACS Applied Materials & amp; Interfaces, 2015, 7, 16387-16394. g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance. Applied Surface Science, 2015, 358, 296-303. Cranulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water. Bioresource Technology, 2015, 178, 119-125.	5.2 4.0 3.1 4.8	172 169 154

#	Article	IF	CITATIONS
19	Bioaugmentation for Electricity Generation from Corn Stover Biomass Using Microbial Fuel Cells. Environmental Science & Technology, 2009, 43, 6088-6093.	4.6	149
20	Ultrasensitive Profiling of Metabolites Using Tyramine-Functionalized Graphene Quantum Dots. ACS Nano, 2016, 10, 3622-3629.	7.3	145
21	Facile hydrothermal synthesis of urchin-like NiCo2O4 spheres as efficient electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2013, 38, 6657-6662.	3.8	143
22	Enhanced Photoelectrocatalytic Activity of BiOI Nanoplate–Zinc Oxide Nanorod p–n Heterojunction. Chemistry - A European Journal, 2015, 21, 15360-15368.	1.7	139
23	Conductive materials in anaerobic digestion: From mechanism to application. Bioresource Technology, 2020, 298, 122403.	4.8	122
24	Highly efficient electro-generation of H2O2 by adjusting liquid-gas-solid three phase interfaces of porous carbonaceous cathode during oxygen reduction reaction. Water Research, 2019, 164, 114933.	5.3	113
25	Three-dimensional electrode microbial fuel cell for hydrogen peroxide synthesis coupled to wastewater treatment. Journal of Power Sources, 2014, 254, 316-322.	4.0	108
26	Electric field induced salt precipitation into activated carbon air-cathode causes power decay in microbial fuel cells. Water Research, 2017, 123, 369-377.	5.3	106
27	A novel carbon black graphite hybrid air-cathode for efficient hydrogen peroxide production in bioelectrochemical systems. Journal of Power Sources, 2016, 306, 495-502.	4.0	102
28	Recovery of phosphate from aqueous solutions via vivianite crystallization: Thermodynamics and influence of pH. Chemical Engineering Journal, 2018, 349, 37-46.	6.6	100
29	Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil. Chemosphere, 2015, 141, 62-70.	4.2	99
30	Enhanced electricity generation and extracellular electron transfer by polydopamine–reduced graphene oxide (PDA–rGO) modification for high-performance anode in microbial fuel cell. Chemical Engineering Journal, 2020, 387, 123408.	6.6	97
31	Building layered NixCo2x(OH)6x nanosheets decorated three-dimensional Ni frameworks for electrochemical applications. Journal of Power Sources, 2016, 317, 1-9.	4.0	94
32	Polydopamine as a new modification material to accelerate startup and promote anode performance in microbial fuel cells. Journal of Power Sources, 2017, 343, 477-482.	4.0	93
33	Superhydrophobic Air-Breathing Cathode for Efficient Hydrogen Peroxide Generation through Two-Electron Pathway Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2019, 11, 35410-35419.	4.0	92
34	A remarkable activity of glycerol electrooxidation on gold in alkaline medium. Electrochimica Acta, 2012, 59, 156-159.	2.6	91
35	Bifunctional MOF-derived Co-N-doped carbon electrocatalysts for high-performance zinc-air batteries and MFCs. Energy, 2018, 156, 95-102.	4.5	91
36	Enhanced biodegradation of aged petroleum hydrocarbons in soils by glucose addition in microbial fuel cells. Journal of Chemical Technology and Biotechnology, 2016, 91, 267-275.	1.6	86

#	Article	IF	CITATIONS
37	Amorphous MnO2 supported on 3D-Ni nanodendrites for large areal capacitance supercapacitors. Electrochimica Acta, 2014, 149, 341-348.	2.6	84
38	Monitoring Dynamic Cellular Redox Homeostasis Using Fluorescence-Switchable Graphene Quantum Dots. ACS Nano, 2016, 10, 11475-11482.	7.3	71
39	Bioelectrochemical Ammoniation Coupled with Microbial Electrolysis for Nitrogen Recovery from Nitrate in Wastewater. Environmental Science & amp; Technology, 2020, 54, 3002-3011.	4.6	71
40	Abruptly autofocusing property of blocked circular Airy beams. Optics Express, 2014, 22, 22847.	1.7	70
41	In situ formation of consubstantial NiCo2S4 nanorod arrays toward self-standing electrode for high activity supercapacitors and overall water splitting. Journal of Power Sources, 2018, 402, 116-123.	4.0	70
42	Acetate limitation selects Geobacter from mixed inoculum and reduces polysaccharide in electroactive biofilm. Water Research, 2020, 177, 115776.	5.3	70
43	A novel electro-coagulation-Fenton for energy efficient cyanobacteria and cyanotoxins removal without chemical addition. Journal of Hazardous Materials, 2019, 365, 650-658.	6.5	65
44	<i>Geobacter</i> Autogenically Secretes Fulvic Acid to Facilitate the Dissimilated Iron Reduction and Vivianite Recovery. Environmental Science & amp; Technology, 2020, 54, 10850-10858.	4.6	65
45	Phosphorus Competition in Bioinduced Vivianite Recovery from Wastewater. Environmental Science & Technology, 2018, 52, 13863-13870.	4.6	64
46	Subminimal inhibitory concentration (sub-MIC) of antibiotic induces electroactive biofilm formation in bioelectrochemical systems. Water Research, 2017, 125, 280-287.	5.3	63
47	Au-NiCo2O4 supported on three-dimensional hierarchical porous graphene-like material for highly effective oxygen evolution reaction. Scientific Reports, 2016, 6, 23398.	1.6	62
48	Accelerated OH [–] Transport in Activated Carbon Air Cathode by Modification of Quaternary Ammonium for Microbial Fuel Cells. Environmental Science & Technology, 2014, 48, 4191-4198.	4.6	60
49	BiOBr nanoplate-wrapped ZnO nanorod arrays for high performance photoelectrocatalytic application. RSC Advances, 2016, 6, 16122-16130.	1.7	60
50	Time behavior and capacitance analysis of nano-Fe3O4 added microbial fuel cells. Bioresource Technology, 2013, 144, 689-692.	4.8	56
51	Resin-enhanced rolling activated carbon electrode for efficient capacitive deionization. Desalination, 2017, 419, 20-28.	4.0	56
52	Revealing Decay Mechanisms of H ₂ O ₂ -Based Electrochemical Advanced Oxidation Processes after Long-Term Operation for Phenol Degradation. Environmental Science & Technology, 2020, 54, 10916-10925.	4.6	56
53	Fenton-based technologies as efficient advanced oxidation processes for microcystin-LR degradation. Science of the Total Environment, 2021, 753, 141809.	3.9	56
54	Photoredox-Catalyzed Hydroacylation of Olefins Employing Carboxylic Acids and Hydrosilanes. Organic Letters, 2017, 19, 3430-3433.	2.4	55

#	Article	IF	CITATIONS
55	Domino-Fluorination–Protodefluorination Enables Decarboxylative Cross-Coupling of α-Oxocarboxylic Acids with Styrene via Photoredox Catalysis. Journal of Organic Chemistry, 2017, 82, 9305-9311.	1.7	55
56	Electron Flow Shifts from Anode Respiration to Nitrate Reduction During Electroactive Biofilm Thickening. Environmental Science & amp; Technology, 2020, 54, 9593-9600.	4.6	55
57	The Direct Electron Transfer of Myoglobin Based on the Electron Tunneling in Proteins. Journal of Physical Chemistry B, 2006, 110, 11561-11565.	1.2	54
58	Enhancing hydrogen evolution reaction through modulating electronic structure of self-supported NiFe LDH. Catalysis Science and Technology, 2020, 10, 4184-4190.	2.1	53
59	MnO2/reduced graphene oxide composite as high-performance electrode for flexible supercapacitors. Inorganic Chemistry Communication, 2013, 30, 1-4.	1.8	52
60	Electrochemical synthesis of ZnO/CdTe core-shell nanotube arrays for enhanced photoelectrochemical properties. Electrochimica Acta, 2013, 98, 268-273.	2.6	52
61	A microbial fuel cell with the three-dimensional electrode applied an external voltage for synthesis of hydrogen peroxide from organic matter. Journal of Power Sources, 2015, 287, 291-296.	4.0	52
62	Self-assembly synthesis of CuSe@graphene–carbon nanotubes as efficient and robust oxygen reduction electrocatalysts for microbial fuel cells. Journal of Materials Chemistry A, 2016, 4, 12273-12280.	5.2	52
63	Alternating Current Influences Anaerobic Electroactive Biofilm Activity. Environmental Science & Technology, 2016, 50, 9169-9176.	4.6	52
64	Bifunctional quaternary ammonium compounds to inhibit biofilm growth and enhance performance for activated carbon air-cathode in microbial fuel cells. Journal of Power Sources, 2014, 272, 895-899.	4.0	51
65	Real-Time Imaging Revealed That Exoelectrogens from Wastewater Are Selected at the Center of a Gradient Electric Field. Environmental Science & Technology, 2018, 52, 8939-8946.	4.6	49
66	One-dimensional ZnO/Mn ₃ O ₄ core/shell nanorod and nanotube arrays with high supercapacitive performance for electrochemical energy storage. RSC Advances, 2014, 4, 17274-17281.	1.7	48
67	Repeated transfer enriches highly active electrotrophic microbial consortia on biocathodes in microbial fuel cells. Biosensors and Bioelectronics, 2018, 121, 118-124.	5.3	48
68	Facile Synthesis of Large-Area Hierarchical Bismuth Molybdate Nanowires for Supercapacitor Applications. Journal of the Electrochemical Society, 2012, 159, D582-D586.	1.3	47
69	Preparation and Enhancement of Thermal Conductivity of Heat Transfer Oil-Based MoS ₂ Nanofluids. Journal of Nanomaterials, 2013, 2013, 1-6.	1.5	46
70	Nutrient conversion and recovery from wastewater using electroactive bacteria. Science of the Total Environment, 2020, 706, 135690.	3.9	46
71	Manganese oxides supported on hydrogenated TiO ₂ nanowire array catalysts for the electrochemical oxygen evolution reaction in water electrolysis. Journal of Materials Chemistry A, 2015, 3, 21308-21313.	5.2	44
72	Photoredox and cobalt co-catalyzed C(sp ²)–H functionalization/C–O bond formation for synthesis of lactones under oxidant- and acceptor-free conditions. Organic Chemistry Frontiers, 2018, 5, 749-752.	2.3	44

#	Article	IF	CITATIONS
73	Electrode potential regulates phenol degradation pathways in oxygen-diffused microbial electrochemical system. Chemical Engineering Journal, 2020, 381, 122663.	6.6	43
74	Power generation using adjustable Nafion/PTFE mixed binders in air-cathode microbial fuel cells. Biosensors and Bioelectronics, 2010, 26, 946-948.	5.3	42
75	Graphene quantum dots based fluorescence turn-on nanoprobe for highly sensitive and selective imaging of hydrogen sulfide in living cells. Biomaterials Science, 2018, 6, 779-784.	2.6	42
76	Anion-assisted one-pot synthesis of 1D magnetic α- and β-MnO ₂ nanostructures for recyclable water treatment application. New Journal of Chemistry, 2015, 39, 2497-2505.	1.4	41
77	Effect of temperature on intracellular phosphorus absorption and extra-cellular phosphorus removal in EBPR process. Bioresource Technology, 2010, 101, 6265-6268.	4.8	40
78	CO ₂ -Responsive Polymer-Functionalized Au Nanoparticles for CO ₂ Sensor. Analytical Chemistry, 2016, 88, 8289-8293.	3.2	40
79	Self-Supported Amorphous-Edge Nickel Sulfide Nanobrush for Excellent Energy Storage. Electrochimica Acta, 2017, 255, 153-159.	2.6	40
80	Novel tungsten carbide nanorods: An intrinsic peroxidase mimetic with high activity and stability in aqueous and organic solvents. Biosensors and Bioelectronics, 2014, 54, 521-527.	5.3	39
81	Protection of Electroactive Biofilm from Extreme Acid Shock by Polydopamine Encapsulation. Environmental Science and Technology Letters, 2017, 4, 345-349.	3.9	39
82	Bioelectrochemical Sensor Using Living Biofilm To in Situ Evaluate Flocculant Toxicity. ACS Sensors, 2016, 1, 1374-1379.	4.0	38
83	Gravity settling of planktonic bacteria to anodes enhances current production of microbial fuel cells. Applied Energy, 2017, 198, 261-266.	5.1	38
84	Regeneration of activated carbon air-cathodes by half-wave rectified alternating fields in microbial fuel cells. Applied Energy, 2018, 219, 199-206.	5.1	37
85	Syntrophic Growth of Geobacter sulfurreducens Accelerates Anaerobic Denitrification. Frontiers in Microbiology, 2018, 9, 1572.	1.5	37
86	Optimal set of electrode potential enhances the toxicity response of biocathode to formaldehyde. Science of the Total Environment, 2018, 644, 1485-1492.	3.9	37
87	In-situ hydrogen peroxide synthesis with environmental applications in bioelectrochemical systems: A state-of-the-art review. International Journal of Hydrogen Energy, 2021, 46, 3204-3219.	3.8	36
88	Ethanol oxidation on Pd/C enhanced by MgO in alkaline medium. International Journal of Hydrogen Energy, 2014, 39, 16015-16019.	3.8	35
89	CuSe decorated carbon nanotubes as a high performance cathode catalyst for microbial fuel cells. Electrochimica Acta, 2016, 213, 283-290.	2.6	35
90	<i>In situ</i> evolution of the active phase on stainless steel mesh toward a cost-effective bifunctional electrode for energy storage and conversion. Chemical Communications, 2019, 55, 2513-2516.	2.2	35

#	Article	IF	CITATIONS
91	Swift Acid Rain Sensing by Synergistic Rhizospheric Bioelectrochemical Responses. ACS Sensors, 2018, 3, 1424-1430.	4.0	34
92	Quaternary Ammonium Compound in Anolyte without Functionalization Accelerates the Startup of Bioelectrochemical Systems using Real Wastewater. Electrochimica Acta, 2016, 188, 801-808.	2.6	33
93	Reagentless biosensor for phenolic compounds based on tyrosinase entrapped within gelatine film. Analytical and Bioanalytical Chemistry, 2005, 383, 1127-1132.	1.9	32
94	Graphite accelerate dissimilatory iron reduction and vivianite crystal enlargement. Water Research, 2021, 189, 116663.	5.3	32
95	Chemical Sensing on a Single SERS Particle. ACS Sensors, 2017, 2, 135-139.	4.0	31
96	Enhanced activity and stability of Co ₃ O ₄ -decorated nitrogen-doped carbon hollow sphere catalysts for microbial fuel cells. Catalysis Science and Technology, 2017, 7, 1315-1323.	2.1	31
97	The micro-niche of exoelectrogens influences bioelectricity generation in bioelectrochemical systems. Renewable and Sustainable Energy Reviews, 2020, 134, 110184.	8.2	31
98	Enhanced performance of microbial fuel cells using Ag nanoparticles modified Co, N co-doped carbon nanosheets as bifunctional cathode catalyst. Bioelectrochemistry, 2021, 138, 107717.	2.4	31
99	Graphene–bacteria composite for oxygen reduction and lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 12873-12879.	5.2	30
100	Pt/C and Pd/C catalysts promoted by Au for glycerol and CO electrooxidation in alkaline medium. Journal of the Energy Institute, 2017, 90, 725-733.	2.7	30
101	Synergistic effect between poly(diallyldimethylammonium chloride) and reduced graphene oxide for high electrochemically active biofilm in microbial fuel cell. Electrochimica Acta, 2020, 359, 136949.	2.6	29
102	Directed electrochemical synthesis of ZnO/PDMcT core/shell nanorod arrays with enhanced photoelectrochemical properties. International Journal of Hydrogen Energy, 2013, 38, 15019-15026.	3.8	28
103	Two zinc-binding domains in the transporter AdcA from facilitate high-affinity binding and fast transport of zinc. Journal of Biological Chemistry, 2018, 293, 6075-6089.	1.6	28
104	Gallic acid-assisted synthesis of Pd uniformly anchored on porous N-rGO as efficient electrocatalyst for microbial fuel cells. Dalton Transactions, 2018, 47, 1442-1450.	1.6	28
105	Rational design and synthesis of hollow Fe–N/C electrocatalysts for enhanced oxygen reduction reaction. Chemical Communications, 2021, 57, 5258-5261.	2.2	27
106	Radiation forces on a Rayleigh particle produced by partially coherent circular Airy beams. Optics Express, 2019, 27, 27777.	1.7	27
107	Biosynthesis of vivianite from microbial extracellular electron transfer and environmental application. Science of the Total Environment, 2021, 762, 143076.	3.9	25
108	Enzymatic-reaction induced production of polydopamine nanoparticles for sensitive and visual sensing of urea. Analyst, The, 2015, 140, 449-455.	1.7	24

#	Article	IF	CITATIONS
109	A CO ₂ -responsive surface with an amidine-terminated self-assembled monolayer for stimuli-induced selective adsorption. Chemical Communications, 2014, 50, 4003-4006.	2.2	23
110	Acid pretreatment of three-dimensional graphite cathodes enhances the hydrogen peroxide synthesis in bioelectrochemical systems. Science of the Total Environment, 2018, 630, 308-313.	3.9	23
111	Unignorable toxicity of formaldehyde on electroactive bacteria in bioelectrochemical systems. Environmental Research, 2020, 183, 109143.	3.7	23
112	A Specific Mass-Tag Approach for Detection of Foodborne Pathogens Using MALDI-TOF Mass Spectrometry. Analytical Chemistry, 2022, 94, 3963-3969.	3.2	23
113	Smartphone-based mobile biosensors for the point-of-care testing of human metabolites. Materials Today Bio, 2022, 14, 100254.	2.6	23
114	Varied metal-binding properties of lipoprotein PsaA in Streptococcus pneumoniae. Journal of Biological Inorganic Chemistry, 2014, 19, 829-838.	1.1	22
115	A facile way to synthesize Er2O3@ZnO core-shell nanorods for photoelectrochemical water splitting. Inorganic Chemistry Communication, 2014, 45, 116-119.	1.8	22
116	Dynamic analysis and rotation experiment of an optical-trapped microsphere in air. Applied Optics, 2018, 57, 823.	0.9	22
117	A universal ultrasensitive platform for enzyme-linked immunoassay based on responsive surface-enhanced Raman scattering. Sensors and Actuators B: Chemical, 2020, 315, 128135.	4.0	22
118	CuCo ₂ S ₄ Nanosheets Coupled With Carbon Nanotube Heterostructures for Highly Efficient Capacitive Energy Storage. ChemElectroChem, 2018, 5, 2496-2502.	1.7	21
119	Facile hydrothermal synthesis of cobalt manganese oxides spindles and their magnetic properties. Ceramics International, 2015, 41, 8670-8679.	2.3	20
120	A self-contained and fully integrated fluidic cassette system for multiplex nucleic acid detection of bacteriuria. Lab on A Chip, 2020, 20, 384-393.	3.1	20
121	Electrochemical regulation on the metabolism of anode biofilms under persistent exogenous bacteria interference. Electrochimica Acta, 2020, 340, 135922.	2.6	20
122	Sulfuration of Fe–N/C porous nanosheets as bifunctional catalyst with remarkable biocompatibility for high-efficient microbial fuel cells. Journal of Power Sources, 2021, 512, 230491.	4.0	20
123	Functional studies of rat galactokinase. Journal of Biotechnology, 2009, 141, 142-146.	1.9	19
124	Porous Co3O4 decorated nitrogen-doped graphene electrocatalysts for efficient bioelectricity generation in MFCs. International Journal of Hydrogen Energy, 2018, 43, 10311-10321.	3.8	19
125	Enhanced lithium storage performance of porous exfoliated carbon fibers <i>via</i> anchored nickel nanoparticles. RSC Advances, 2018, 8, 17056-17059.	1.7	19
126	Co0.85Se on three-dimensional hierarchical porous graphene-like carbon for highly effective oxygen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 10182-10189.	3.8	19

#	Article	IF	CITATIONS
127	Spatially heterogeneous propionate conversion towards electricity in bioelectrochemical systems. Journal of Power Sources, 2020, 449, 227557.	4.0	18
128	Revolution of a trapped particle in counter-propagating dual-beam optical tweezers under low pressure. Optics Express, 2021, 29, 11169.	1.7	18
129	Co, N co-doped hierarchical porous carbon as efficient cathode electrocatalyst and its impact on microbial community of anode biofilm in microbial fuel cell. Chemosphere, 2022, 291, 132701.	4.2	18
130	Characterization of mitochondrial trifunctional protein and its inactivation study for medicine development. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 1742-1749.	1.1	16
131	Proteomic analysis on the antibacterial activity of a Ru(II) complex against Streptococcus pneumoniae. Journal of Proteomics, 2015, 115, 107-116.	1.2	15
132	Gold Superparticles Functionalized with Azobenzene Derivatives: SERS Nanotags with Strong Signals. ACS Applied Materials & Interfaces, 2017, 9, 10530-10536.	4.0	15
133	A simple method for the preparation of a nickel selenide and cobalt selenide mixed catalyst to enhance bifunctional oxygen activity for Zn–air batteries. RSC Advances, 2021, 11, 19406-19416.	1.7	15
134	One-pot synthesis of ultrafine TiO2 nanoparticles with enhanced thermal conductivity for nanofluid applications. Advanced Powder Technology, 2016, 27, 299-304.	2.0	14
135	Review of optical tweezers in vacuum. Frontiers of Information Technology and Electronic Engineering, 2019, 20, 655-673.	1.5	14
136	Electron affinity regulation on ultrathin manganese oxide nanosheets toward ultra-stable pseudocapacitance. Journal of Materials Chemistry A, 2020, 8, 23257-23264.	5.2	14
137	Graphene family for hydrogen peroxide production in electrochemical system. Science of the Total Environment, 2021, 769, 144491.	3.9	14
138	Pretreatment of Raw Biochar and Phosphate Removal Performance of Modified Granular Iron/Biochar. Transactions of Tianjin University, 2017, 23, 340-350.	3.3	13
139	Crucial residue Trp158 of lipoprotein PiaA stabilizes the ferrichrome-PiaA complex in Streptococcus pneumoniae. Journal of Inorganic Biochemistry, 2017, 167, 150-156.	1.5	13
140	Heterotopic formaldehyde biodegradation through UV/H 2 O 2 system with biosynthetic H 2 O 2. Water Environment Research, 2019, 91, 598-605.	1.3	13
141	Sensitive and Rapid Diagnosis of Respiratory Virus Coinfection Using a Microfluidic Chipâ€Powered CRISPR/Cas12a System. Small, 2022, 18, .	5.2	13
142	Synthesis and characterization of DDP-coated PbO nanoparticles. Journal of Materials Chemistry, 2002, 12, 1124-1127.	6.7	12
143	A novel single chamber vertical baffle flow biocathode microbial electrochemical system with microbial separator. Bioresource Technology, 2019, 294, 122236.	4.8	12
144	Engineering Ni3+ inside nickel selenide as efficient bifunctional oxygen electrocatalysts for Zn–air batteries. Journal of Materials Science, 2019, 54, 9063-9074.	1.7	12

#	Article	IF	CITATIONS
145	A highly sensitive bioelectrochemical toxicity sensor and its evaluation using immediate current attenuation. Science of the Total Environment, 2021, 766, 142646.	3.9	12
146	Chemical Interference with Iron Transport Systems to Suppress Bacterial Growth of Streptococcus pneumoniae. PLoS ONE, 2014, 9, e105953.	1.1	12
147	Thiophene-derived polymer dots for imaging endocytic compartments in live cells and broad-spectrum bacterial killing. Materials Chemistry Frontiers, 2017, 1, 152-157.	3.2	11
148	Novel g-C3N4Âwrapped Î ³ -Al2O3 microspheres heterojunction for efficient photocatalytic application under visible light irradiation. Journal of Materials Science: Materials in Electronics, 2018, 29, 4509-4516.	1.1	11
149	Efficient regeneration of activated carbon electrode by half-wave rectified alternating fields in capacitive deionization system. Electrochimica Acta, 2019, 298, 372-378.	2.6	11
150	Surface modification by β-cyclodextrin/polyquaternium-11 composite for enhanced biofilm formation in microbial fuel cells. Journal of Power Sources, 2020, 480, 228789.	4.0	11
151	Enhanced electrocatalytic activity and antifouling performance by iron phthalocyanine doped filtration membrane cathode. Chemical Engineering Journal, 2021, 413, 127536.	6.6	11
152	The UV/H2O2 process based on H2O2 in-situ generation for water disinfection. Journal of Hazardous Materials Letters, 2021, 2, 100020.	2.0	11
153	Maltese cross coupling to individual cold atoms in free space. Optics Express, 2019, 27, 31042.	1.7	11
154	Twoâ€Dimensional Agâ^'Feâ^'N/C Nanosheets as Efficient Cathode Catalyst to Improve Powerâ€Generation Performance of Microbial Fuel Cells. ChemElectroChem, 2022, 9, .	1.7	11
155	Fixed Bed Adsorption Study on Phosphate Removal Using Nanosized FeOOH-Modified Anion Resin. Journal of Nanomaterials, 2013, 2013, 1-5.	1.5	10
156	Enhanced adsorption of phosphate by loading nanosized ferric oxyhydroxide on anion resin. Frontiers of Environmental Science and Engineering, 2014, 8, 531-538.	3.3	10
157	A facile way to prepare CuS-oil nanofluids with enhanced thermal conductivity and appropriate viscosity. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	10
158	Nickel cobaltite@nanocarbon hybrid materials as efficient cathode catalyst for oxygen reduction in microbial fuel cells. Journal of Materials Science, 2017, 52, 7539-7545.	1.7	10
159	Co _{0.85} Se/Multi-Walled Carbon Nanotube Composite as Alternative Cathode Catalyst for Microbial Fuel Cells. Journal of Nanoscience and Nanotechnology, 2017, 17, 1438-1442.	0.9	10
160	Launch and capture of a single particle in a pulse-laser-assisted dual-beam fiber-optic trap. Optics Communications, 2018, 417, 103-109.	1.0	10
161	Dirhodium (II) complex interferes with iron-transport system to exert antibacterial action against Streptococcus pneumoniae. Journal of Proteomics, 2019, 194, 160-167.	1.2	10
162	SPD_1495 Contributes to Capsular Polysaccharide Synthesis and Virulence in Streptococcus pneumoniae. MSystems, 2020, 5, .	1.7	10

#	Article	IF	CITATIONS
163	Stimuli-responsive SERS nanoprobes for multiplexing detection. Sensors and Actuators B: Chemical, 2019, 281, 977-982.	4.0	9
164	Fast size estimation of single-levitated nanoparticles in a vacuum optomechanical system. Optics Letters, 2021, 46, 4614.	1.7	9
165	Nanofluids Containing Stearic Acid-Modified CuO Nanorods and Their Thermal Conductivity Enhancements. Nanoscience and Nanotechnology Letters, 2015, 7, 314-317.	0.4	9
166	Lipoprotein SPD_1609 of Streptococcus pneumoniae Promotes Adherence and Invasion to Epithelial Cells Contributing to Bacterial Virulence. Frontiers in Microbiology, 2019, 10, 1769.	1.5	8
167	The use of natural hierarchical porous carbon from Artemia cyst shells alleviates power decay in activated carbon air-cathode. Electrochimica Acta, 2019, 315, 41-47.	2.6	8
168	A Novel Approach to Double the Sensitivity of Polarization Maintaining Interferometric Fiber Optic Gyroscope. Sensors, 2020, 20, 3762.	2.1	8
169	A Portable Microfluidic System for Point-of-Care Detection of Multiple Protein Biomarkers. Micromachines, 2021, 12, 347.	1.4	8
170	FDTD simulation of optical force under non-ideal conditions. Optics Communications, 2022, 505, 127586.	1.0	8
171	Effect of a disulfide bond on mevalonate kinase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 1571-1581.	1.1	7
172	Structures of six photochromic 3d complexes containing 3,3′-azobis-1,2,4-triazole ligand. CrystEngComm, 2013, 15, 8529.	1.3	7
173	Sol–gel synthesis and analysis of high efficiency submicron-sized Ca3Sc2Si3O12:Ce3+,Tb3+ phosphor for white light emitting diodes. Journal of Luminescence, 2014, 148, 156-160.	1.5	7
174	Highly Bright SERS Nanotags with Multiplexing Fingerprints for Sensitive Immunoassays. Advanced Optical Materials, 2017, 5, 1700133.	3.6	7
175	Displacement Detection Decoupling in Counter-Propagating Dual-Beams Optical Tweezers with Large-Sized Particle. Sensors, 2020, 20, 4916.	2.1	7
176	Excessive extracellular polymeric substances induced by organic shocks accelerate electron transfer of oxygen reducing biocathode. Science of the Total Environment, 2021, 774, 145767.	3.9	7
177	Comparative studies of Acyl-CoA dehydrogenases for monomethyl branched chain substrates in amino acid metabolism. Bioorganic Chemistry, 2013, 47, 1-8.	2.0	6
178	Chlorine anion–li€ and li€â^'–li€â^' interactions in two tetrazolyl derivative based Cu2+ complexes and quantum chemical calculations. Inorganica Chimica Acta, 2014, 409, 349-352.	1.2	6
179	Enhanced oxygen reduction activity and high-quality effluent of membrane filtration electrodes with Prussian blue in microbial fuel cells. Science of the Total Environment, 2021, 753, 142021.	3.9	6
180	Inactivation of Thiolase by 2-Alkynoyl-CoA via Its Intrinsic Isomerase Activity. Organic Letters, 2007, 9, 3877-3880.	2.4	5

#	Article	IF	CITATIONS
181	Formation of an enolate intermediate is required for the reaction catalyzed by 3-hydroxyacyl-CoA dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3187-3190.	1.0	5
182	Syntheses, structures and photochromic properties of two tetrazolylazo-based K ⁺ and Cd ²⁺ complexes. Journal of Coordination Chemistry, 2014, 67, 3243-3251.	0.8	5
183	The enhancement of the abruptly autofocusing property with multiple circular Airy beams carrying lens phase factors. Applied Physics B: Lasers and Optics, 2018, 124, 1.	1.1	5
184	Stimuli-responsive azobenzene-quantum dots for multi-sensing of dithionite, hypochlorite, and azoreductase. Mikrochimica Acta, 2020, 187, 481.	2.5	5
185	Characterization of His-tagged Rat Uroporphyrinogen III Synthase Wild-Type and Variant Enzymes. Protein Journal, 2007, 26, 569-576.	0.7	4
186	Probing the active site of rat porphobilinogen synthase using newly developed inhibitors. Bioorganic Chemistry, 2009, 37, 33-40.	2.0	4
187	3D Sn-Based Alloy Nanodendrites: Electrodeposition as a Superior Route for Synthesizing Complex Dendritic Nanostructures. Journal of the Electrochemical Society, 2012, 159, D737-D741.	1.3	4
188	Removal of Cr(VI) ions from wastewater using nanosized ferric oxyhydroxide loaded anion exchanger on a fixedbed column. Desalination and Water Treatment, 2014, 52, 3572-3578.	1.0	4
189	Shape-controllable gold nanostructures and their SERS enhancement. Materials Research Express, 2016, 3, 105009.	0.8	4
190	Ï€-Ï€ stacking-directed self-assembly of nanoplatelets into diversified three-dimensional superparticles for high surface-enhanced Raman scattering. Journal of Colloid and Interface Science, 2020, 575, 54-60.	5.0	4
191	Simultaneous Trapping of Two Types of Particles with Focused Elegant Third-Order Hermite–Gaussian Beams. Micromachines, 2021, 12, 769.	1.4	4
192	Multiplexed detection of respiratory pathogens with a portable analyzer in a "raw-sample-in and answer-out―manner. Microsystems and Nanoengineering, 2021, 7, 94.	3.4	4
193	Numerical Analysis of Optical Trapping Force Affected by Lens Misalignments. Photonics, 2021, 8, 548.	0.9	4
194	Capture region shrinkage and levitation instability of optical trap induced by decreased damping in vacuum. Optics Communications, 2022, 512, 128034.	1.0	4
195	Functional studies of rat hydroxymethylbilane synthase. Bioorganic Chemistry, 2008, 36, 241-251.	2.0	3
196	A Chip of Pulse-Laser-Assisted Dual-Beam Fiber-Optic Trap. , 2018, , .		2
197	Optical rotation conveyor belt based on a polarization-maintaining hollow-core photonic crystal fiber. Optical Review, 2020, 27, 561-567.	1.2	2
198	Numerical analysis on the optical force calculation in the Rayleigh scattering regime. Optical Review, 2021, 28, 1-7.	1.2	2

#	Article	IF	CITATIONS
199	3D calibration of microsphere position in optical tweezers using the back-focal-plane interferometry method. Optics Express, 2021, 29, 32271.	1.7	2
200	Biomimetic multifactor stimulation method for analyzing the synergism of matrix stiffness and inorganic polyphosphates on cellular behaviors. Talanta, 2022, 241, 123222.	2.9	2
201	Simultaneous and independent capture of multiple Rayleigh dielectric nanospheres with sine-modulated Gaussian beams. Scientific Reports, 2021, 11, 125.	1.6	1
202	A fully integrated SNP genotyping system for hereditary hearing-loss detection. Lab on A Chip, 2022, 22, 697-708.	3.1	1
203	Analysis and Suppression of Laser Intensity Fluctuation in a Dual-Beam Optical Levitation System. Micromachines, 2022, 13, 984.	1.4	0