Lujiang Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2393904/publications.pdf

Version: 2024-02-01

471509 580821 1,149 25 25 17 h-index citations g-index papers 25 25 25 1371 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives. Green Chemistry, 2018, 20, 3657-3682.	9.0	233
2	Selective Hydrodeoxygenation of Lignin-Derived Phenols to Cyclohexanols or Cyclohexanes over Magnetic CoNx@NC Catalysts under Mild Conditions. ACS Catalysis, 2016, 6, 7611-7620.	11.2	181
3	Renewable N-Heterocycles Production by Thermocatalytic Conversion and Ammonization of Biomass over ZSM-5. ACS Sustainable Chemistry and Engineering, 2015, 3, 2890-2899.	6.7	102
4	Integrated Production of Aromatic Amines and N-Doped Carbon from Lignin via <i>ex Situ</i> Catalytic Fast Pyrolysis in the Presence of Ammonia over Zeolites. ACS Sustainable Chemistry and Engineering, 2017, 5, 2960-2969.	6.7	71
5	Towards the sustainable production of pyridines via thermo-catalytic conversion of glycerol with ammonia over zeolite catalysts. Green Chemistry, 2015, 17, 2426-2435.	9.0	52
6	A comparative study on the quality of bio-oil derived from green macroalga Enteromorpha clathrata over metal modified ZSM-5 catalysts. Bioresource Technology, 2018, 256, 446-455.	9.6	49
7	Direct production of indoles via thermo-catalytic conversion of bio-derived furans with ammonia over zeolites. Green Chemistry, 2015, 17, 1281-1290.	9.0	48
8	Production of indoles via thermo-catalytic conversion and ammonization of bio-derived furfural. Chemical Engineering Journal, 2015, 280, 74-81.	12.7	41
9	Recent Advances of Producing Biobased N-Containing Compounds via Thermo-Chemical Conversion with Ammonia Process. Energy & Energy	5.1	35
10	Co-pyrolysis and catalytic co-pyrolysis of Enteromorpha clathrata and rice husk. Journal of Thermal Analysis and Calorimetry, 2019, 135, 2613-2623.	3.6	33
11	Selective production of pyrroles via catalytic fast pyrolysis of cellulose under ammonia atmosphere at low temperature. Journal of Analytical and Applied Pyrolysis, 2017, 124, 409-414.	5.5	31
12	Catalytic pyrolysis of waste clay oil to produce high quality biofuel. Journal of Analytical and Applied Pyrolysis, 2019, 141, 104633.	5.5	31
13	Advances in Upgrading Lignin Pyrolysis Vapors by Exâ€Situ Catalytic Fast Pyrolysis. Energy Technology, 2017, 5, 30-51.	3.8	29
14	Catalytic fast pyrolysis of polyethylene terephthalate plastic for the selective production of terephthalonitrile under ammonia atmosphere. Waste Management, 2019, 92, 97-106.	7.4	28
15	Producing Pyridines via Thermocatalytic Conversion and Ammonization of Waste Polylactic Acid over Zeolites. ACS Sustainable Chemistry and Engineering, 2016, 4, 1115-1122.	6.7	24
16	Insight into the Mechanism of Glycerol Dehydration and Subsequent Pyridine Synthesis. ACS Sustainable Chemistry and Engineering, 2021, 9, 3095-3103.	6.7	23
17	Comprehensively utilization of spent bleaching clay for producing high quality bio-fuel via fast pyrolysis process. Energy, 2020, 190, 116371.	8.8	20
18	Catalytic fast hydropyrolysis of seaweed biomass with different zeolite catalysts to produce high-grade bio-oil. Chemical Engineering Research and Design, 2021, 146, 69-76.	5.6	18

#	ARTICLE	lF	CITATION
19	Producing pyridines via thermo-catalytic conversion and ammonization of glycerol over nano-sized HZSM-5. RSC Advances, 2016, 6, 86034-86042.	3.6	17
20	Enhancement of indoles production and catalyst stability in thermo-catalytic conversion and ammonization of furfural with NH3 and N2 environments. Journal of Analytical and Applied Pyrolysis, 2016, 121, 258-266.	5.5	16
21	In situ synthesis of molybdenum oxide@N-doped carbon from biomass for selective vapor phase hydrodeoxygenation of lignin-derived phenols under H ₂ atmosphere. RSC Advances, 2016, 6, 108217-108228.	3.6	15
22	Selective Production of Terephthalonitrile and Benzonitrile via Pyrolysis of Polyethylene Terephthalate (PET) with Ammonia over Ca(OH)2/Al2O3 Catalysts. Catalysts, 2019, 9, 436.	3.5	15
23	Production of aromatic amines via catalytic co-pyrolysis of lignin and phenol-formaldehyde resins with ammonia over commercial HZSM-5 zeolites. Bioresource Technology, 2021, 320, 124252.	9.6	15
24	Different acid pretreatments at room temperature boost selective saccharification of lignocellulose via fast pyrolysis. Cellulose, 2021, 28, 81-90.	4.9	12
25	Catalytic co-pyrolysis of cellulose and waste polyoxymethylene to improve producing pyridines compounds over commercial HZSM-5 zeolites under ammonia atmosphere. Journal of Analytical and Applied Pyrolysis, 2021, 158, 105275.	5.5	10