Leandra S Baptista

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2393768/publications.pdf

Version: 2024-02-01

535685 511568 38 975 17 30 h-index g-index citations papers 39 39 39 1630 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Acute Toxicological and Biodistribution Aspects of Superparamagnetic Magnetite Nanoparticles In Vitro and on Animal Tissues. BioNanoScience, 2022, 12, 49.	1.5	O
2	Large-Scale, Automated Production of Adipose-Derived Stem Cell Spheroids for 3D Bioprinting. Journal of Visualized Experiments, 2022, , .	0.2	2
3	A Scaffold- and Serum-Free Method to Mimic Human Stable Cartilage Validated by Secretome. Tissue Engineering - Part A, 2021, 27, 311-327.	1.6	17
4	Spheroids and organoids as humanized 3D scaffoldâ€free engineered tissues for SARSâ€CoVâ€⊋ viral infection and drug screening. Artificial Organs, 2021, 45, 548-558.	1.0	21
5	Adipose tissue-derived stromal/stem cells + cholecalciferol: a pilot study in recent-onset type 1 diabetes patients. Archives of Endocrinology and Metabolism, 2021, 65, 342-351.	0.3	10
6	The hypertrophic cartilage induction influences the buildingâ€block capacity of human adipose stem/stromal cell spheroids for biofabrication. Artificial Organs, 2021, 45, 1208-1218.	1.0	5
7	Recapitulating Tumorigenesis in vitro: Opportunities and Challenges of 3D Bioprinting. Frontiers in Bioengineering and Biotechnology, 2021, 9, 682498.	2.0	16
8	Production and Characterization of Poly (Lactic Acid)/Nanostructured Carboapatite for 3D Printing of Bioactive Scaffolds for Bone Tissue Engineering. 3D Printing and Additive Manufacturing, 2021, 8, 227-237.	1.4	2
9	A novel conjunctive microenvironment derived from human subcutaneous adipose tissue contributes to physiology of its superficial layer. Stem Cell Research and Therapy, 2021, 12, 480.	2.4	6
10	Continuous-mode encapsulation of human stemÂcell spheroids using droplet-based glass-capillary microfluidic device for 3D bioprinting technology. Biochemical Engineering Journal, 2021, 174, 108122.	1.8	8
11	Grafts of human adipose-derived stem cells into a biodegradable poly (acid lactic) conduit enhances sciatic nerve regeneration. Brain Research, 2020, 1747, 147026.	1.1	2
12	Allogenic Adipose Tissue-Derived Stromal/Stem Cells and Vitamin D Supplementation in Patients With Recent-Onset Type 1 Diabetes Mellitus: A 3-Month Follow-Up Pilot Study. Frontiers in Immunology, 2020, 11, 993.	2.2	23
13	Scaffold―and serumâ€free hypertrophic cartilage tissue engineering as an alternative approach for bone repair. Artificial Organs, 2020, 44, E288-E299.	1.0	11
14	Adipose stromal/stem cells in regenerative medicine: Potentials and limitations. World Journal of Stem Cells, 2020, 12, 1-7.	1.3	17
15	Cartilage and bone tissue engineering using adipose stromal/stem cells spheroids as building blocks. World Journal of Stem Cells, 2020, 12, 110-122.	1.3	30
16	183-OR: Allogenic Adipose-Derived Mesenchymal Stem Cells (ASCs) and Vitamin D Supplementation in Patients with Recent-Onset Type 1 Diabetes Mellitus: A 6-Month Follow-Up Pilot Study. Diabetes, 2020, 69, .	0.3	0
17	Adaptation of a skin sensitization assay to a chemically defined culture. Toxicology in Vitro, 2019, 57, 145-153.	1.1	7
18	Neuromedin B receptor disruption impairs adipogenesis in mice and 3T3-L1 cells. Journal of Molecular Endocrinology, 2019, 63, 93-102.	1.1	25

#	Article	IF	CITATIONS
19	Adipose-derived stromal/stem cells from different adipose depots in obesity development. World Journal of Stem Cells, 2019, 11, 147-166.	1.3	37
20	Measurement uncertainty evaluation of cellular spheroids surface tension in compressing tests using Young-Laplace equation. Journal of Physics: Conference Series, 2018, 975, 012027.	0.3	2
21	Biologically produced silver chloride nanoparticles from B. megaterium modulate interleukin secretion by human adipose stem cell spheroids. Cytotechnology, 2018, 70, 1655-1669.	0.7	4
22	Spheroids of stem cells as endochondral templates for improved bone engineering. Frontiers in Bioscience - Landmark, 2018, 23, 1969-1986.	3.0	13
23	Adult Stem Cells Spheroids to Optimize Cell Colonization in Scaffolds for Cartilage and Bone Tissue Engineering. International Journal of Molecular Sciences, 2018, 19, 1285.	1.8	58
24	Low toxicity superparamagnetic magnetite nanoparticles: One-pot facile green synthesis for biological applications. Materials Science and Engineering C, 2017, 78, 457-466.	3.8	17
25	Successful Low-Cost Scaffold-Free Cartilage Tissue Engineering Using Human Cartilage Progenitor Cell Spheroids Formed by Micromolded Nonadhesive Hydrogel. Stem Cells International, 2017, 2017, 1-11.	1.2	28
26	Characterization of stromal vascular fraction and adipose stem cells from subcutaneous, preperitoneal and visceral morbidly obese human adipose tissue depots. PLoS ONE, 2017, 12, e0174115.	1.1	50
27	Delivery of Human Adipose Stem Cells Spheroids into Lockyballs. PLoS ONE, 2016, 11, e0166073.	1.1	36
28	The Anti-Tumor Effects of Adipose Tissue Mesenchymal Stem Cell Transduced with HSV-Tk Gene on U-87-Driven Brain Tumor. PLoS ONE, 2015, 10, e0128922.	1.1	46
29	Obesity and weight loss could alter the properties of adipose stem cells?. World Journal of Stem Cells, 2015, 7, 165.	1.3	43
30	Stromal-vascular fraction content and adipose stem cell behavior are altered in morbid obese and post bariatric surgery ex-obese women. Stem Cell Research and Therapy, 2015, 6, 72.	2.4	56
31	The fusion of tissue spheroids attached to pre-stretched electrospun polyurethane scaffolds. Journal of Tissue Engineering, 2014, 5, 204173141455656.	2.3	32
32	Bioengineered Cartilage in a Scaffoldâ€Free Method by Human Cartilageâ€Derived Progenitor Cells: A Comparison With Human Adiposeâ€Derived Mesenchymal Stromal Cells. Artificial Organs, 2013, 37, 1068-1075.	1.0	20
33	Isolation of human nasoseptal chondrogenic cells: A promise for cartilage engineering. Stem Cell Research, 2012, 8, 292-299.	0.3	41
34	Effects of Centrifugation on Cell Composition and Viability of Aspirated Adipose Tissue Processed for Transplantation. Aesthetic Surgery Journal, 2010, 30, 249-255.	0.9	114
35	Adipose Tissue of Control and Ex-Obese Patients Exhibit Differences in Blood Vessel Content and Resident Mesenchymal Stem Cell Population. Obesity Surgery, 2009, 19, 1304-1312.	1.1	55
36	An alternative method for the isolation of mesenchymal stromal cells derived from lipoaspirate samples. Cytotherapy, 2009, 11, 706-715.	0.3	91

3

#	Article	IF	CITATIONS
37	Fibroin-Based Material from Natural Silk Can Be Associated with Alginate and Mesenchymal Progenitor Cells. Key Engineering Materials, 2008, 396-398, 437-440.	0.4	1
38	Multicellular spheroids of bone marrow stromal cells: a three-dimensional in vitro culture system for the study of hematopoietic cell migration. Brazilian Journal of Medical and Biological Research, 2005, 38, 1455-1462.	0.7	18