
Charles Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2393695/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cholesterol and HIF-1α: Dangerous Liaisons in Atherosclerosis. Frontiers in Immunology, 2022, 13, 868958.	2.2	15
2	Adverse Mechanical Ventilation and Pneumococcal Pneumonia Induce Immune and Mitochondrial Dysfunctions Mitigated by Mesenchymal Stem Cells in Rabbits. Anesthesiology, 2022, 136, 293-313.	1.3	3
3	Regulation of glycolytic genes in human macrophages by oxysterols: a potential role for liver X receptors. British Journal of Pharmacology, 2021, 178, 3124-3139.	2.7	9
4	Non-lipogenic ABCA1 inducers: The holy grail in cardio-metabolic diseases?. EBioMedicine, 2021, 66, 103324.	2.7	1
5	High plasma concentration of non-esterified polyunsaturated fatty acids is a specific feature of severe COVID-19 pneumonia. Scientific Reports, 2021, 11, 10824.	1.6	17
6	Muricholic Acids Promote Resistance to Hypercholesterolemia in Cholesterol-Fed Mice. International Journal of Molecular Sciences, 2021, 22, 7163.	1.8	6
7	Deletion of lysophosphatidylcholine acyltransferase 3 in myeloid cells worsens hepatic steatosis after a high-fat diet. Journal of Lipid Research, 2021, 62, 100013.	2.0	11
8	Interplay between Liver X Receptor and Hypoxia Inducible Factor 1α Potentiates Interleukin-1β Production in Human Macrophages. Cell Reports, 2020, 31, 107665.	2.9	39
9	Intestinal release of biofilm-like microcolonies encased in calcium-pectinate beads increases probiotic properties of Lacticaseibacillus paracasei. Npj Biofilms and Microbiomes, 2020, 6, 44.	2.9	33
10	CXCL10 could drive longer duration of mechanical ventilation during COVID-19 ARDS. Critical Care, 2020, 24, 632.	2.5	67
11	Inhibition of mitophagy drives macrophage activation and antibacterial defense during sepsis. Journal of Clinical Investigation, 2020, 130, 5858-5874.	3.9	87
12	Revisiting the Role of LXRs in PUFA Metabolism and Phospholipid Homeostasis. International Journal of Molecular Sciences, 2019, 20, 3787.	1.8	18
13	Macrophage fatty acid metabolism and atherosclerosis: The rise of PUFAs. Atherosclerosis, 2019, 291, 52-61.	0.4	37
14	Docosahexaenoic acid inhibits both NLRP3 inflammasome assembly and JNK-mediated mature IL-1Î ² secretion in 5-fluorouracil-treated MDSC: implication in cancer treatment. Cell Death and Disease, 2019, 10, 485.	2.7	34
15	Fatty acids getting NAD+ about cardiometabolic diseases. Current Opinion in Lipidology, 2019, 30, 486-487.	1.2	0
16	LPCAT3 deficiency in hematopoietic cells alters cholesterol and phospholipid homeostasis and promotes atherosclerosis. Atherosclerosis, 2018, 275, 409-418.	0.4	31
17	Fatty acid metabolism in macrophages: a target in cardio-metabolic diseases. Current Opinion in Lipidology, 2017, 28, 19-26.	1.2	30
18	Enteroendocrine L Cells Sense LPS after Gut Barrier Injury to Enhance GLP-1 Secretion. Cell Reports, 2017, 21, 1160-1168.	2.9	139

CHARLES THOMAS

#	Article	IF	CITATIONS
19	Fatty acids and macrophage functions. Current Opinion in Lipidology, 2017, 28, 443-444.	1.2	0
20	Recombinant human plasma phospholipid transfer protein (PLTP) to prevent bacterial growth and to treat sepsis. Scientific Reports, 2017, 7, 3053.	1.6	26
21	Phenolic extract from oleaster (Olea europaea var. Sylvestris) leaves reduces colon cancer growth and induces caspase-dependent apoptosis in colon cancer cells via the mitochondrial apoptotic pathway. PLoS ONE, 2017, 12, e0170823.	1.1	28
22	Inhibition of colon cancer growth by docosahexaenoic acid involves autocrine production of TNFα. Oncogene, 2016, 35, 4611-4622.	2.6	40
23	Liver X Receptor Activation Promotes Polyunsaturated Fatty Acid Synthesis in Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1357-1365.	1.1	52
24	Activation of liver x receptors promotes polyunsaturated fatty acid synthesis and eicosanoid secretion in human macrophages. Atherosclerosis, 2014, 235, e49.	0.4	0
25	Probing the Binding Site of Bile Acids in TGR5. ACS Medicinal Chemistry Letters, 2013, 4, 1158-1162.	1.3	36
26	Liver X Receptor Regulates Arachidonic Acid Distribution and Eicosanoid Release in Human Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1171-1179.	1.1	54
27	Liver-specific ablation of KrÃŀ4ppel-associated box-associated protein 1 in mice leads to male-predominant hepatosteatosis and development of liver adenoma. Hepatology, 2012, 56, 1279-1290.	3.6	47
28	PARP-1 Inhibition Increases Mitochondrial Metabolism through SIRT1 Activation. Cell Metabolism, 2011, 13, 461-468.	7.2	673
29	TGR5 Activation Inhibits Atherosclerosis by Reducing Macrophage Inflammation and Lipid Loading. Cell Metabolism, 2011, 14, 747-757.	7.2	469
30	Exercise Performance Tests in Mice. Current Protocols in Mouse Biology, 2011, 1, 141-154.	1.2	27
31	Assessment of Spontaneous Locomotor and Running Activity in Mice. Current Protocols in Mouse Biology, 2011, 1, 185-198.	1.2	5
32	The metabolic footprint of aging in mice. Scientific Reports, 2011, 1, 134.	1.6	440
33	Hepatic lipid metabolism response to dietary fatty acids is differently modulated by PPARα in male and female mice. European Journal of Nutrition, 2009, 48, 465-473.	1.8	30
34	Discovery of 6α-Ethyl-23(<i>S</i>)-methylcholic Acid (<i>S</i> -EMCA, INT-777) as a Potent and Selective Agonist for the TGR5 Receptor, a Novel Target for Diabesity. Journal of Medicinal Chemistry, 2009, 52, 7958-7961.	2.9	220
35	TGR5-Mediated Bile Acid Sensing Controls Glucose Homeostasis. Cell Metabolism, 2009, 10, 167-177.	7.2	1,465
36	Linking nutrition and metabolism, a role for the membrane bile acid receptor TGR5. , 2009, , 145-150.		0

Linking nutrition and metabolism, a role for the membrane bile acid receptor TGR5. , 2009, , 145-150. 36

CHARLES THOMAS

#	Article	IF	CITATIONS
37	Novel Potent and Selective Bile Acid Derivatives as TGR5 Agonists: Biological Screening, Structureâ`'Activity Relationships, and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2008, 51, 1831-1841.	2.9	259
38	Targeting bile-acid signalling for metabolic diseases. Nature Reviews Drug Discovery, 2008, 7, 678-693.	21.5	1,084
39	Bile Acids and the Membrane Bile Acid Receptor TGR5—Connecting Nutrition and Metabolism. Thyroid, 2008, 18, 167-174.	2.4	139
40	Molecular Field Analysis and 3D-Quantitative Structureâ´'Activity Relationship Study (MFA 3D-QSAR) Unveil Novel Features of Bile Acid Recognition at TGR5. Journal of Chemical Information and Modeling, 2008, 48, 1792-1801.	2.5	23
41	Compromised Intestinal Lipid Absorption in Mice with a Liver-Specific Deficiency of Liver Receptor Homolog 1. Molecular and Cellular Biology, 2007, 27, 8330-8339.	1.1	135
42	Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochemical and Biophysical Research Communications, 2007, 362, 793-798.	1.0	302
43	HORMONAL REGULATION OF THE NOTCH PATHWAY GENES IN THE GRANULOSA CELLS DURING GONADOTROPIN INDUCED OVARIAN FOLLICULAR GROWTH. Biology of Reproduction, 2007, 77, 119-119.	1.2	0
44	Cholesterol dependent downregulation of mouse and human apical sodium dependent bile acid transporter (ASBT) gene expression: molecular mechanism and physiological consequences. Gut, 2006, 55, 1321-1331.	6.1	33
45	The gene encoding the human ileal bile acid-binding protein (I-BABP) is regulated by peroxisome proliferator-activated receptors. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1735, 41-49.	1.2	13
46	Statin Induction of Liver Fatty Acid-Binding Protein (L-FABP) Gene Expression Is Peroxisome Proliferator-activated Receptor-α-dependent. Journal of Biological Chemistry, 2004, 279, 45512-45518.	1.6	84