Sagar Bhogaraju

List of Publications by Citations

Source: https://exaly.com/author-pdf/2393653/sagar-bhogaraju-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 23
 1,501
 17
 24

 papers
 citations
 h-index
 g-index

 24
 1,866
 18.2
 4.47

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
23	PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. <i>Molecular Cell</i> , 2015 , 57, 39-54	17.6	311
22	Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. <i>Science</i> , 2013 , 341, 1009-12	33.3	200
21	Phosphoribosylation of Ubiquitin Promotes Serine Ubiquitination and Impairs Conventional Ubiquitination. <i>Cell</i> , 2016 , 167, 1636-1649.e13	56.2	157
20	Architecture and function of IFT complex proteins in ciliogenesis. <i>Differentiation</i> , 2012 , 83, S12-22	3.5	136
19	Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin-binding IFT-B2 complex. <i>EMBO Journal</i> , 2016 , 35, 773-90	13	116
18	Intraflagellar transport complex structure and cargo interactions. Cilia, 2013, 2, 10	5.5	85
17	Crystal structure of the intraflagellar transport complex 25/27. EMBO Journal, 2011 , 30, 1907-18	13	84
16	Bacteria-host relationship: ubiquitin ligases as weapons of invasion. <i>Cell Research</i> , 2016 , 26, 499-510	24.7	72
15	Inhibition of bacterial ubiquitin ligases by SidJ-calmodulin catalysed glutamylation. <i>Nature</i> , 2019 , 572, 382-386	50.4	58
14	Biochemical mapping of interactions within the intraflagellar transport (IFT) B core complex: IFT52 binds directly to four other IFT-B subunits. <i>Journal of Biological Chemistry</i> , 2011 , 286, 26344-52	5.4	58
13	Insights into catalysis and function of phosphoribosyl-linked serine ubiquitination. <i>Nature</i> , 2018 , 557, 734-738	50.4	48
12	Regulation of Phosphoribosyl-Linked Serine Ubiquitination by Deubiquitinases DupA and DupB. <i>Molecular Cell</i> , 2020 , 77, 164-179.e6	17.6	43
11	Structural basis for the recognition and degradation of host TRIM proteins by Salmonella effector SopA. <i>Nature Communications</i> , 2017 , 8, 14004	17.4	32
10	Getting tubulin to the tip of the cilium: one IFT train, many different tubulin cargo-binding sites?. <i>BioEssays</i> , 2014 , 36, 463-7	4.1	31
9	Circularly permuted GTPase YqeH binds 30S ribosomal subunit: Implications for its role in ribosome assembly. <i>Biochemical and Biophysical Research Communications</i> , 2009 , 386, 602-6	3.4	19
8	A General Approach Towards Triazole-Linked Adenosine Diphosphate Ribosylated Peptides and Proteins. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 1659-1662	16.4	18
7	Cell biology: Ubiquitination without E1 and E2 enzymes. <i>Nature</i> , 2016 , 533, 43-4	50.4	17

LIST OF PUBLICATIONS

6	Purification and crystal structure of human ODA16: Implications for ciliary import of outer dynein arms by the intraflagellar transport machinery. <i>Protein Science</i> , 2020 , 29, 1502-1510	6.3	6
5	A General Approach Towards Triazole-Linked Adenosine Diphosphate Ribosylated Peptides and Proteins. <i>Angewandte Chemie</i> , 2018 , 130, 1675-1678	3.6	3
4	Crystal structure of a Chlamydomonas reinhardtii flagellar RabGAP TBC-domain at 1.8 Iresolution. <i>Proteins: Structure, Function and Bioinformatics</i> , 2014 , 82, 2282-7	4.2	3
3	Crystal structure of tetrameric human Rabin8 GEF domain. <i>Proteins: Structure, Function and Bioinformatics</i> , 2018 , 86, 405-413	4.2	2
2	A peek into the atomic details of thalidomidels clinical effects. <i>Nature Structural and Molecular Biology</i> , 2014 , 21, 739-40	17.6	2
1	Structural basis for protein glutamylation by the Legionella pseudokinase SidJ. <i>Nature Communications</i> , 2021 , 12, 6174	17.4	O