
Ajay M Sidpara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2393509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tribological aspects of different machining processes. , 2022, , 213-238.		о
2	A review on micro machining of polymer composites. Journal of Manufacturing Processes, 2022, 77, 87-113.	5.9	17
3	Experimental and theoretical investigation into surface roughness and residual stress in magnetorheological finishing of OFHC copper. Journal of Materials Processing Technology, 2021, 288, 116899.	6.3	36
4	Magnetorheological finishing of WC-Co coating using iron-B4C-CNT composite abrasives. Tribology International, 2021, 155, 106807.	5.9	14
5	Brittle-ductile transition in compliant finishing of HVOF sprayed hard WC-Co coating. International Journal of Refractory Metals and Hard Materials, 2021, 99, 105610.	3.8	4
6	Theoretical analysis of magnetorheological finishing of HVOF sprayed WC-Co coating. International Journal of Mechanical Sciences, 2021, 207, 106629.	6.7	14
7	Theoretical and experimental investigation of material removal rate in shape adaptive grinding of HVOF sprayed WC-Co coating. Precision Engineering, 2021, 72, 627-639.	3.4	10
8	Numerical and experimental study of influence function in magnetorheological finishing of oxygen-free high conductivity (OFHC) copper. Smart Materials and Structures, 2021, 30, 015034.	3.5	7
9	Post-Processing of HVOF Sprayed WC-Co Coating to Enhance its Performance. , 2020, , 658-673.		3
10	Parameter optimization and texture evolution in single point incremental sheet forming process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020, 234, 126-139.	2.4	31
11	Fabrication of micro-end mill tool by EDM and its performance evaluation. Machining Science and Technology, 2020, 24, 169-194.	2.5	11
12	Graphene/Magnetite (Fe3O4) Hybrid Fillers for Thermoplastic Composites: X-Band Electromagnetic Interference Shielding Characteristics. Journal of Electronic Materials, 2020, 49, 7259-7271.	2.2	7
13	Sustainable conducting polymer composites: study of mechanical and tribological properties of natural fiber reinforced PVA composites with carbon nanofillers. Polymer-Plastics Technology and Materials, 2020, 59, 1088-1099.	1.3	23
14	PVA/ MLG/ MWCNT hybrid composites for X band EMI shielding – Study of mechanical, electrical, thermal and tribological properties. Materials Today Communications, 2020, 23, 100941.	1.9	19
15	Study of different materials response in micro milling using four edged micro end mill tools. Journal of Manufacturing Processes, 2020, 56, 169-179.	5.9	9
16	Fabrication of mechanically durable slippery surface on HVOF sprayed WC-Co coating. Surface and Coatings Technology, 2020, 394, 125886.	4.8	11
17	Parametric study on influence function in magnetorheological finishing of single crystal silicon. International Journal of Advanced Manufacturing Technology, 2019, 100, 1043-1054.	3.0	18
18	Understanding the role of surface roughness on the tribological performance and corrosion resistance of WC-Co coating. Surface and Coatings Technology, 2019, 378, 125080.	4.8	48

AJAY M SIDPARA

#	Article	IF	CITATIONS
19	Highly filled multilayer thermoplastic/graphene conducting composite structures with high strength and thermal stability for electromagnetic interference shielding applications. Journal of Applied Polymer Science, 2019, 136, 47792.	2.6	35
20	Graphene and CNT filled hybrid thermoplastic composites for enhanced EMI shielding effectiveness. Materials Research Express, 2019, 6, 085617.	1.6	45
21	An investigation into the wear mechanism of zirconia-alumina polishing pad under different environments in shape adaptive grinding of WC-Co coating. Wear, 2019, 428-429, 223-236.	3.1	21
22	On the Flexible Abrasive Tool for Nanofinishing of Complex Surfaces. Journal of Advanced Manufacturing Systems, 2019, 18, 157-166.	1.0	4
23	Single point incremental forming of AA6061 thin sheet: calibration of ductile fracture models incorporating anisotropy and post forming analyses. International Journal of Material Forming, 2019, 12, 623-642.	2.0	20
24	Length-wise tool wear compensation for micro electric discharge drilling of blind holes. Measurement: Journal of the International Measurement Confederation, 2019, 134, 888-896.	5.0	11
25	Experimental and theoretical investigation into simultaneous deburring of microchannel and cleaning of the cutting tool in micromilling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233, 1761-1771.	2.4	11
26	Preliminary Results on Finishing of WC-Co Coating by Magnetorheological Finishing Process. , 2019, , .		0
27	Fabrication of Optical Components by Ultraprecision Finishing Processes. Engineering Materials, 2018, , 87-119.	0.6	9
28	On the effect of relative size of magnetic particles and abrasive particles in MR fluid-based finishing process. Machining Science and Technology, 2018, 22, 493-506.	2.5	35
29	High efficiency chemical assisted nanofinishing of HVOF sprayed WC-Co coating. Surface and Coatings Technology, 2018, 334, 204-214.	4.8	42
30	Characterization of Nanofinished WC-Co Coating Using Advanced 3D Surface Texture Parameters. , 2018, , .		0
31	Comprehensive study to evaluate the lifespan of flexible polishing pads by 3D surface characterization technique. Measurement: Journal of the International Measurement Confederation, 2018, 127, 29-41.	5.0	10
32	Review of several precision finishing processes for optics manufacturing. Journal of Micromanufacturing, 2018, 1, 170-188.	1.1	40
33	Advanced Micromachining. , 2016, , 115-148.		1
34	Nanofinishing of freeform surfaces (knee joint implant) by rotational-magnetorheological abrasive flow finishing (R-MRAFF) process. Precision Engineering, 2015, 42, 165-178.	3.4	94
35	Magnetorheological finishing: a perfect solution to nanofinishing requirements. Optical Engineering, 2014, 53, 092002.	1.0	21
36	Micromanufacturing: A review—Part I. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2014, 228, 973-994.	2.4	62

AJAY M SIDPARA

#	Article	IF	CITATIONS
37	Rheological Properties and Their Correlation with Surface Finish Quality in MR Fluid-Based Finishing Process. Machining Science and Technology, 2014, 18, 367-385.	2.5	49
38	Analysis of forces on the freeform surface in magnetorheological fluid based finishing process. International Journal of Machine Tools and Manufacture, 2013, 69, 1-10.	13.4	71
39	FABRICATIONS OF MICRO TOOLS AND MICRO PATTERNS BY ELECTROCHEMICAL MICROMACHINING AND SOME INVESTIGATION INTO OVERPOTENTIAL. Journal of Advanced Manufacturing Systems, 2013, 12, 85-106.	1.0	9
40	Analysis of forces and surface roughness in magnetic abrasive finishing with a ball-end tool. International Journal of Precision Technology, 2013, 3, 131.	0.2	2
41	Some Aspects of Micro-Fabrication Using Electro Discharge Deposition Process. , 2012, , .		5
42	Micromanufacturing. , 2012, , 3-37.		2
43	Nano-finishing techniques: a review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2012, 226, 327-346.	2.1	50
44	Nanofinishing of freeform surfaces of prosthetic knee joint implant. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226, 1833-1846.	2.4	63
45	Fabrication of micro-features and micro-tools using electrochemical micromachining. International Journal of Advanced Manufacturing Technology, 2012, 61, 1175-1183.	3.0	54
46	Experimental investigations into surface roughness and yield stress in magnetorheological fluid based nano-finishing process. International Journal of Precision Engineering and Manufacturing, 2012, 13, 855-860.	2.2	29
47	Some aspects of fabrication of micro devices by electrochemical micromachining (ECMM) and its finishing by magnetorheological fluid. International Journal of Advanced Manufacturing Technology, 2012, 59, 987-996.	3.0	24
48	Theoretical analysis of forces in magnetorheological fluid based finishing process. International Journal of Mechanical Sciences, 2012, 56, 50-59.	6.7	86
49	Nano–level finishing of single crystal silicon blank using magnetorheological finishing process. Tribology International, 2012, 47, 159-166.	5.9	76
50	Effect of fluid composition on nanofinishing of single-crystal silicon by magnetic field-assisted finishing process. International Journal of Advanced Manufacturing Technology, 2011, 55, 243-252.	3.0	43
51	Experimental investigations into forces during magnetorheological fluid based finishing process. International Journal of Machine Tools and Manufacture, 2011, 51, 358-362.	13.4	75
52	Parametric analysis of MR polishing fluid using statistical technique. International Journal of Precision Technology, 2011, 2, 51.	0.2	6
53	Investigations into abrasive flow finishing of complex workpieces using FEM. Wear, 2009, 267, 71-80.	3.1	49
54	Rheological Characterization of Magnetorheological Finishing Fluid. Materials and Manufacturing Processes, 2009, 24, 1467-1478.	4.7	141

#	Article	IF	CITATIONS
55	Some Investigations Into Magnetorheological Finishing (MRF) of Hard Materials. , 2009, , .		3
56	Micro Electro Discharge Machining. , 0, , .		2