William W L Cheung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2393379/publications.pdf

Version: 2024-02-01

86 papers 11,289 citations

47006 47 h-index 84 g-index

90 all docs 90 docs citations

times ranked

90

12344 citing authors

#	Article	IF	CITATIONS
1	Scenarios for Global Biodiversity in the 21st Century. Science, 2010, 330, 1496-1501.	12.6	1,570
2	Largeâ€scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology, 2010, 16, 24-35.	9.5	943
3	Signature of ocean warming in global fisheries catch. Nature, 2013, 497, 365-368.	27.8	669
4	Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nature Climate Change, 2013, 3, 254-258.	18.8	527
5	Climate change impacts on the biophysics and economics of world fisheries. Nature Climate Change, 2011, 1, 449-456.	18.8	506
6	Nutrition: Fall in fish catch threatens human health. Nature, 2016, 534, 317-320.	27.8	445
7	Protecting the global ocean for biodiversity, food and climate. Nature, 2021, 592, 397-402.	27.8	359
8	Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12907-12912.	7.1	357
9	A rapid assessment of co-benefits and trade-offs among Sustainable Development Goals. Marine Policy, 2018, 93, 223-231.	3.2	278
10	Preparing ocean governance for species on the move. Science, 2018, 360, 1189-1191.	12.6	260
11	Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES Journal of Marine Science, 2011, 68, 1008-1018.	2.5	253
12	Ocean Solutions to Address Climate Change and Its Effects on Marine Ecosystems. Frontiers in Marine Science, 2018, 5, .	2.5	248
13	Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES Journal of Marine Science, 2015, 72, 741-752.	2.5	224
14	Reconciling fisheries catch and ocean productivity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1441-E1449.	7.1	195
15	Projected change in global fisheries revenues under climate change. Scientific Reports, 2016, 6, 32607.	3.3	192
16	Large benefits to marine fisheries of meeting the $1.5 \mbox{\ensuremath{\mbox{A}}}{}^{\circ}\mbox{\ensuremath{\mbox{C}}}$ global warming target. Science, 2016, 354, 1591-1594.	12.6	191
17	Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Global Change Biology, 2018, 24, e15-e26.	9.5	170
18	Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nature Ecology and Evolution, 2017, 1, 1240-1249.	7.8	161

#	Article	IF	Citations
19	Twentyâ€firstâ€century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Global Change Biology, 2019, 25, 459-472.	9.5	151
20	Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem. Global Change Biology, 2015, 21, 130-143.	9.5	148
21	Sources of uncertainties in 21st century projections of potential ocean ecosystem stressors. Global Biogeochemical Cycles, 2016, 30, 1224-1243.	4.9	142
22	Climate change, tropical fisheries and prospects for sustainable development. Nature Reviews Earth & Environment, 2020, 1, 440-454.	29.7	136
23	Observed and Projected Impacts of Climate Change on Marine Fisheries, Aquaculture, Coastal Tourism, and Human Health: An Update. Frontiers in Marine Science, 2016, 3, .	2.5	129
24	Uncertainties in projecting climate-change impacts in marine ecosystems. ICES Journal of Marine Science, 2016, 73, 1272-1282.	2.5	126
25	Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Scientific Reports, 2020, 10, 6678.	3.3	121
26	Winners and losers in a world where the high seas is closed to fishing. Scientific Reports, 2015, 5, 8481.	3.3	118
27	A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geoscientific Model Development, 2018, 11 , $1421-1442$.	3.6	116
28	Enabling conditions for an equitable and sustainable blue economy. Nature, 2021, 591, 396-401.	27.8	108
29	Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model. Global Change Biology, 2013, 19, 2596-2607.	9.5	106
30	Building confidence in projections of the responses of living marine resources to climate change. ICES Journal of Marine Science, 2016, 73, 1283-1296.	2.5	106
31	Fisheries: Hope or despair?. Marine Pollution Bulletin, 2013, 74, 506-516.	5.0	96
32	Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nature Climate Change, 2021, 11, 973-981.	18.8	96
33	Adaptation strategies to climate change in marine systems. Global Change Biology, 2018, 24, e1-e14.	9.5	91
34	Climate-change induced tropicalisation of marine communities in Western Australia. Marine and Freshwater Research, 2012, 63, 415.	1.3	89
35	Review of climate change impacts on marine fisheries in the UK and Ireland. Aquatic Conservation: Marine and Freshwater Ecosystems, 2012, 22, 368-388.	2.0	86
36	Benefits of the Paris Agreement to ocean life, economies, and people. Science Advances, 2019, 5, eaau 3855.	10.3	79

#	Article	IF	CITATIONS
37	Predicting the Impact of Climate Change on Threatened Species in UK Waters. PLoS ONE, 2013, 8, e54216.	2.5	78
38	Energy Flow Through Marine Ecosystems: Confronting Transfer Efficiency. Trends in Ecology and Evolution, 2021, 36, 76-86.	8.7	70
39	Marine high temperature extremes amplify the impacts of climate change on fish and fisheries. Science Advances, 2021, 7, eabh0895.	10.3	70
40	The global ocean is an ecosystem: simulating marine life and fisheries. Global Ecology and Biogeography, 2015, 24, 507-517.	5.8	68
41	Climate change considerations are fundamental to management of deepâ€sea resource extraction. Global Change Biology, 2020, 26, 4664-4678.	9.5	65
42	Global estimation of areas with suitable environmental conditions for mariculture species. PLoS ONE, 2018, 13, e0191086.	2.5	63
43	Climate change undermines the global functioning of marine food webs. Global Change Biology, 2020, 26, 1306-1318.	9.5	60
44	Projecting marine fish production and catch potential in Bangladesh in the 21st century under long-term environmental change and management scenarios. ICES Journal of Marine Science, 2016, 73, 1357-1369.	2.5	58
45	Using fuzzy logic to determine the vulnerability of marine species to climate change. Global Change Biology, 2018, 24, e719-e731.	9.5	58
46	Projected amplification of food web bioaccumulation of MeHg and PCBs under climate change in the Northeastern Pacific. Scientific Reports, 2018, 8, 13460.	3.3	50
47	Opportunities for climateâ€risk reduction through effective fisheries management. Global Change Biology, 2018, 24, 5149-5163.	9.5	50
48	Governing Marine Fisheries in a Changing Climate: A Gameâ€Theoretic Perspective. Canadian Journal of Agricultural Economics, 2013, 61, 309-334.	2.1	49
49	Using scenarios to project the changing profitability of fisheries under climate change. Fish and Fisheries, 2015, 16, 603-622.	5.3	48
50	Compound climate risks threaten aquatic food system benefits. Nature Food, 2021, 2, 673-682.	14.0	48
51	Governing for Transformative Change across the Biodiversity–Climate–Society Nexus. BioScience, 2022, 72, 684-704.	4.9	48
52	Persistent Uncertainties in Ocean Net Primary Production Climate Change Projections at Regional Scales Raise Challenges for Assessing Impacts on Ecosystem Services. Frontiers in Climate, 2021, 3, .	2.8	46
53	Impacts of the Changing Ocean-Sea Ice System on the Key Forage Fish Arctic Cod (Boreogadus Saida) and Subsistence Fisheries in the Western Canadian Arctic—Evaluating Linked Climate, Ecosystem and Economic (CEE) Models. Frontiers in Marine Science, 2019, 6, .	2.5	43
54	Global change in the trophic functioning of marine food webs. PLoS ONE, 2017, 12, e0182826.	2.5	43

#	Article	IF	CITATIONS
55	Disentangling diverse responses to climate change among global marine ecosystem models. Progress in Oceanography, 2021, 198, 102659.	3.2	42
56	Civil disobedience movements such as School Strike for the Climate are raising public awareness of the climate change emergency. Global Change Biology, 2020, 26, 1042-1044.	9.5	40
57	Essential outcomes for COP26. Global Change Biology, 2022, 28, 1-3.	9.5	40
58	Transform high seas management to build climate resilience in marine seafood supply. Fish and Fisheries, 2017, 18, 254-263.	5.3	39
59	A quantitative review of abundanceâ€based species distribution models. Ecography, 2022, 2022, .	4.5	37
60	Climate impacts on the ocean are making the Sustainable Development Goals a moving target travelling away from us. People and Nature, 2019, 1, 317-330.	3.7	36
61	Micronutrient supply from global marine fisheries under climate change and overfishing. Current Biology, 2021, 31, 4132-4138.e3.	3.9	35
62	Climateâ€induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production. Global Change Biology, 2021, 27, 2608-2622.	9.5	32
63	Is fisheries production within <scp>L</scp> arge <scp>M</scp> arine <scp>E</scp> cosystems determined by bottomâ€up or topâ€down forcing?. Fish and Fisheries, 2015, 16, 623-632.	5.3	31
64	Timing and magnitude of climateâ€driven range shifts in transboundary fish stocks challenge their management. Global Change Biology, 2022, 28, 2312-2326.	9.5	30
65	Predicting how climate change threatens the prey base of Arctic marine predators. Ecology Letters, 2021, 24, 2563-2575.	6.4	27
66	Potential impacts of climate-related decline of seafood harvest on nutritional status of coastal First Nations in British Columbia, Canada. PLoS ONE, 2019, 14, e0211473.	2.5	25
67	Can we project changes in fish abundance and distribution in response to climate?. Global Change Biology, 2020, 26, 3891-3905.	9.5	25
68	Projecting global mariculture diversity under climate change. Global Change Biology, 2020, 26, 2134-2148.	9.5	25
69	An iron cycle cascade governs the response of equatorial Pacific ecosystems to climate change. Global Change Biology, 2020, 26, 6168-6179.	9.5	25
70	Potential socioeconomic impacts from ocean acidification and climate change effects on Atlantic Canadian fisheries. PLoS ONE, 2020, 15, e0226544.	2.5	23
71	On confusing cause and effect in the oxygen limitation of fish. Global Change Biology, 2018, 24, e743-e744.	9.5	17
72	Climate change, shifting threat points, and the management of transboundary fish stocks. Ecology and Society, 2020, 25, .	2.3	17

#	Article	lF	CITATIONS
73	Meeting Paris agreement objectives will temper seabird winter distribution shifts in the North Atlantic Ocean. Global Change Biology, 2021, 27, 1457-1469.	9.5	16
74	Contrasting Futures for Australia's Fisheries Stocks Under IPCC RCP8.5 Emissions – A Multi-Ecosystem Model Approach. Frontiers in Marine Science, 2020, 7, .	2.5	15
75	Challenges to transboundary fisheries management in North America under climate change. Ecology and Society, 2020, 25, .	2.3	14
76	Projecting global mariculture production and adaptation pathways under climate change. Global Change Biology, 2022, 28, 1315-1331.	9.5	12
77	Projecting changes in the distribution and maximum catch potential of warm water fishes under climate change scenarios in the Yellow Sea. Diversity and Distributions, 2020, 26, 806-817.	4.1	11
78	Effects of climate change and fishing on the Pearl River Estuary ecosystem and fisheries. Reviews in Fish Biology and Fisheries, 2019, 29, 861-875.	4.9	8
79	A fuzzy logic expert system for evaluating policy progress towards sustainability goals. Ambio, 2018, 47, 595-607.	5.5	7
80	Ocean Acidification Amplifies Multi-Stressor Impacts on Global Marine Invertebrate Fisheries. Frontiers in Marine Science, 2021, 8, .	2.5	7
81	Species and Functional Dynamics of the Demersal Fish Community and Responses to Disturbances in the Pearl River Estuary. Frontiers in Marine Science, 0, 9, .	2.5	6
82	Modelling ocean acidification effects with life stage-specific responses alters spatiotemporal patterns of catch and revenues of American lobster, Homarus americanus. Scientific Reports, 2021, 11, 23330.	3.3	5
83	Linking observed changes in pelagic catches to temperature and oxygen in the Eastern Tropical Pacific. Fish and Fisheries, 2022, 23, 1371-1382.	5.3	4
84	Temperature and oxygen supply shape the demersal community in a tropical Oxygen Minimum Zone. Environmental Biology of Fishes, 2022, 105, 1317-1333.	1.0	3
85	A palaeothermometer of ancient Indigenous fisheries reveals increases in mean temperature of the catch over five millennia. Environmental Biology of Fishes, 0, , .	1.0	3
86	Signature of climate-induced changes in seafood species served in restaurants. Environmental Biology of Fishes, 0, , 1.	1.0	2