Daqiang Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2393363/publications.pdf

Version: 2024-02-01

66343 76900 6,747 158 42 74 citations h-index g-index papers 166 166 166 7061 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Understanding light pollution: Recent advances on its health threats and regulations. Journal of Environmental Sciences, 2023, 127, 589-602.	6.1	36
2	Fatty acid profile as an efficient bioindicator of PCB bioaccumulation in a freshwater lake food web: A stable isotope guided investigation. Journal of Hazardous Materials, 2022, 423, 127121.	12.4	10
3	Mo2C/C catalyst as efficient peroxymonosulfate activator for carbamazepine degradation. Chemosphere, 2022, 287, 132047.	8.2	15
4	Rapid detoxification of Microcystin-LR by selective catalytic hydrogenation of the Adda moiety using TiO2-supported Pd catalysts. Chemosphere, 2022, 288, 132641.	8.2	4
5	Obesogenic effect of erythromycin on Caenorhabditis elegans through over-eating and lipid metabolism disturbances. Environmental Pollution, 2022, 294, 118615.	7.5	11
6	Characteristics and removal of antibiotics and antibiotic resistance genes in a constructed wetland from a drinking water source in the Yangtze River Delta. Science of the Total Environment, 2022, 813, 152540.	8.0	21
7	A review of secondary organic aerosols formation focusing on organosulfates and organic nitrates. Journal of Hazardous Materials, 2022, 430, 128406.	12.4	17
8	Organophosphate flame retardants induce oxidative stress and Chop/Caspase 3-related apoptosis via Sod1/p53/Map3k6/Fkbp5 in NCI-1975 cells. Science of the Total Environment, 2022, 819, 153160.	8.0	20
9	Novel sphere-like copper bismuth oxide fabricated via ethylene glycol-introduced solvothermal method with improved adsorptive and photocatalytic performance in sulfamethazine removal. Environmental Science and Pollution Research, 2022, 29, 47159-47173.	5. 3	4
10	Biomimic Nanozymes with Tunable Peroxidase-like Activity Based on the Confinement Effect of Metal–Organic Frameworks (MOFs) for Biosensing. Analytical Chemistry, 2022, 94, 4821-4830.	6.5	60
11	Alkyl organophosphate flame retardants (OPFRs) induce lung inflammation and aggravate OVA-simulated asthmatic response via the NF-аB signaling pathway. Environment International, 2022, 163, 107209.	10.0	17
12	Efficient organics heterogeneous degradation by spinel CuFe2O4 supported porous carbon nitride catalyst: Multiple electron transfer pathways for reactive oxygen species generation. Chemosphere, 2022, 300, 134511.	8.2	16
13	BDE-99 Disrupts the Photoreceptor Patterning of Zebrafish Larvae via Transcription Factor <i>six7</i> Environmental Science & amp; Technology, 2022, 56, 5673-5683.	10.0	11
14	A pilot study on extractable organofluorine and per- and polyfluoroalkyl substances (PFAS) in water from drinking water treatment plants around Taihu Lake, China: what is missed by target PFAS analysis?. Environmental Sciences: Processes and Impacts, 2022, 24, 1060-1070.	3. 5	9
15	Oxidized nanoscale zero-valent iron changed the bioaccumulation and distribution of chromium in zebrafish. Chemosphere, 2021, 263, 128001.	8.2	1
16	Formation and degradation mechanisms of CX3R-type oxidation by-products during cobalt catalyzed peroxymonosulfate oxidation: The roles of Co3+ and SO4Â Journal of Hazardous Materials, 2021, 405, 124243.	12.4	6
17	Regulable metal-oxo-bridge configurations as electron transfer bridge to promote Cu(II)/Cu(I) redox behavior for efficient peroxymonosulfate activation. Journal of Hazardous Materials, 2021, 410, 124629.	12.4	21
18	Occurrence and risk evaluation of organophosphorus flame retardants in two urban rivers in Yangtze River Delta. Environmental Monitoring and Assessment, 2021, 193, 146.	2.7	9

#	Article	IF	Citations
19	Developmental and neurobehavioral assessment of low-dose N-nitrosodimethylamine (NDMA) using zebrafish embryo bioassay. Science of the Total Environment, 2021, 770, 144748.	8.0	7
20	Bioaccessibility evaluation of pharmaceuticals in market fish with in vitro simulated digestion. Journal of Hazardous Materials, 2021, 411, 125039.	12.4	7
21	Influences of sex, rhythm and generation on the obesogenic potential of erythromycin to Drosophila melanogaster. Science of the Total Environment, 2021, 771, 145315.	8.0	15
22	What's in the water? – Target and suspect screening of contaminants of emerging concern in raw water and drinking water from Europe and Asia. Water Research, 2021, 198, 117099.	11.3	46
23	Chemosensory Dysfunction Induced by Environmental Pollutants and Its Potential As a Novel Neurotoxicological Indicator: A Review. Environmental Science & Environmental Science & 2021, 55, 10911-10922.	10.0	11
24	Distribution of antimicrobial resistance across the overall environment of dairy farms – A case study. Science of the Total Environment, 2021, 788, 147489.	8.0	18
25	Multi- and trans-generational disturbances of perfluorobutane sulfonate and perfluorohexane sulfonate on lipid metabolism in Caenorhabditis elegans. Chemosphere, 2021, 280, 130666.	8.2	20
26	Dissolved organic carbon removal and CX3R-type byproduct formation during the peroxymonosulfate pre-oxidation followed by coagulation. Chemical Engineering Journal, 2021, 421, 129654.	12.7	5
27	Applicability of Enchytraeus bulbosus as a model species in ecotoxicology and risk assessment. Ecotoxicology and Environmental Safety, 2021, 224, 112660.	6.0	0
28	Cu-O-incorporation design for promoted heterogeneous catalysis: synergistic effect of surface adsorption and catalysis towards efficient bisphenol A removal. Applied Surface Science, 2021, 569, 151107.	6.1	8
29	Distribution, toxicity load, and risk assessment of dissolved metal in surface and overlying water at the Xiangjiang River in southern China. Scientific Reports, 2021, 11, 109.	3.3	21
30	Promoted peroxymonosulfate activation by electron transport channel construction for rapid Cu(<scp>ii</scp>)/Cu(<scp>i</scp>) redox couple circulation. Environmental Science: Nano, 2021, 8, 2618-2628.	4.3	7
31	A Lab-in-a-Syringe Device Integrated with a Smartphone Platform: Colorimetric and Fluorescent Dual-Mode Signals for On-Site Detection of Organophosphorus Pesticides. ACS Applied Materials & amp; Interfaces, 2021, 13, 48643-48652.	8.0	59
32	Screening and Discrimination of Perfluoroalkyl Substances in Aqueous Solution Using a Luminescent Metal–Organic Framework Sensor Array. ACS Applied Materials & 1, 13, 47706-47716.	8.0	16
33	Reduction in Arsenic Exposure by Domestic Water Purification Devices in Shanghai Area and Related Health Risk Assessment. Water (Switzerland), 2021, 13, 2916.	2.7	2
34	Overlooked Significant Impact of Trace Metals on the Bacterial Community of PM _{2.5} in Highâ€Time Resolution. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035408.	3.3	3
35	Role of pyrophosphate on the degradation of sulfamethoxazole by permanganate combined with different reductants: Positive or negative. Water Environment Research, 2020, 92, 604-611.	2.7	5
36	Multi-generational obesogenic effects of sulfomethoxazole on Caenorhabditis elegans through epigenetic regulation. Journal of Hazardous Materials, 2020, 382, 121061.	12.4	34

#	Article	IF	Citations
37	Ferrous ion mitigates the negative effects of humic acid on removal of 4-nitrophenol by zerovalent iron. Journal of Hazardous Materials, 2020, 383, 121218.	12.4	12
38	Multigenerational effects of perfluorooctanoic acid on lipid metabolism of Caenorhabditis elegans and its potential mechanism. Science of the Total Environment, 2020, 703, 134762.	8.0	27
39	Evaluating the effect of different modified microplastics on the availability of polycyclic aromatic hydrocarbons. Water Research, 2020, 170, 115290.	11.3	62
40	Distribution and source of heavy metals in the sediments of the coastal East China sea: Geochemical controls and typhoon impact. Environmental Pollution, 2020, 260, 113936.	7.5	47
41	3D hollow sphere-like Cu-incorporated LaAlO3 perovskites for peroxymonosulfate activation: Coaction of electron transfer and oxygen defect. Chemical Engineering Journal, 2020, 385, 123935.	12.7	54
42	Hydrochars from pinewood for adsorption and nonradical catalysis of bisphenols. Journal of Hazardous Materials, 2020, 385, 121548.	12.4	31
43	Tai Hu (China): Water quality and processes – From the source to the tap. Science of the Total Environment, 2020, 712, 135559.	8.0	7
44	Developmental exposure to lead at environmentally relevant concentrations impaired neurobehavior and NMDAR-dependent BDNF signaling in zebrafish larvae. Environmental Pollution, 2020, 257, 113627.	7.5	21
45	Peroxymonosulfate/chloride disinfection versus sodium hypochlorite disinfection in terms of the formation and estimated cytotoxicity of CX3R-type disinfection by-products under the same dose of free chlorine. Chemical Engineering Journal, 2020, 391, 123557.	12.7	17
46	Predicting the aggregation tendency of oxidized nanoscale zero-valent iron in aquatic environments. Environmental Science and Pollution Research, 2020, 27, 44177-44182.	5.3	0
47	Facile Construction of a Copper-Containing Covalent Bond for Peroxymonosulfate Activation: Efficient Redox Behavior of Copper Species via Electron Transfer Regulation. ACS Applied Materials & Interfaces, 2020, 12, 42790-42802.	8.0	24
48	The long-term environmental risks from the aging of organochlorine pesticide lindane. Environment International, 2020, 141, 105778.	10.0	16
49	Studying Neurobehavioral Effects of Environmental Pollutants on Zebrafish Larvae. Journal of Visualized Experiments, 2020, , .	0.3	1
50	The potential relationship between neurobehavioral toxicity and visual dysfunction of BDE-209 on zebrafish larvae: a pilot study. Environmental Sciences Europe, 2020, 32, .	5 . 5	14
51	Chlorinated Paraffins in Human Milk from Urban Sites in China, Sweden, and Norway. Environmental Science & Environmental Scien	10.0	56
52	A sensitive optical-based test method for the locomotor activity of earthworms. Science of the Total Environment, 2020, 715, 136966.	8.0	3
53	Obesogenic Effect of Sulfamethoxazole on <i>Drosophila melanogaster</i> with Simultaneous Disturbances on Eclosion Rhythm, Glucolipid Metabolism, and Microbiota. Environmental Science & Technology, 2020, 54, 5667-5675.	10.0	32
54	Screening of organic micropollutants in raw and drinking water in the Yangtze River Delta, China. Environmental Sciences Europe, 2020, 32, .	5.5	21

#	Article	IF	CITATIONS
55	Distribution of 31 endocrine-disrupting compounds in the Taihu Lake and application of the fish plasma model. Environmental Sciences Europe, 2020, 32, .	5.5	14
56	Characteristics of antibiotics and antibiotic resistance genes in Qingcaosha Reservoir in Yangtze River Delta, China. Environmental Sciences Europe, 2020, 32, .	5.5	19
57	Development of an ammonium chloride-enhanced thermal-assisted-ESI LC-HRMS method for the characterization of chlorinated paraffins. Environmental Pollution, 2019, 255, 113303.	7.5	15
58	Specific ion effects on the aggregation behavior of aquatic natural organic matter. Journal of Colloid and Interface Science, 2019, 556, 734-742.	9.4	25
59	Using Caenorhabditis elegans for Studying Trans- and Multi-Generational Effects of Toxicants. Journal of Visualized Experiments, 2019, , .	0.3	2
60	Enhanced Removal of Veterinary Antibiotic Florfenicol by a Cu-Based Fenton-like Catalyst with Wide pH Adaptability and High Efficiency. ACS Omega, 2019, 4, 1982-1994.	3.5	35
61	The chlorine contents and chain lengths influence the neurobehavioral effects of commercial chlorinated paraffins on zebrafish larvae. Journal of Hazardous Materials, 2019, 377, 172-178.	12.4	32
62	Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. Environment International, 2019, 130, 104938.	10.0	180
63	The unlocking neurobehavioral effects of environmental endocrine-disrupting chemicals. Current Opinion in Endocrine and Metabolic Research, 2019, 7, 9-13.	1.4	6
64	Geochemical controls on the distribution of mercury and methylmercury in sediments of the coastal East China Sea. Science of the Total Environment, 2019, 667, 133-141.	8.0	28
65	Toxicological and ecotoxicological evaluation of the water quality in a large and eutrophic freshwater lake of China. Science of the Total Environment, 2019, 667, 809-820.	8.0	19
66	Fostering Water Treatment in Eutrophic Areas: Innovative Water Quality Monitoring, and Technologies Mitigating Taste & Odor Problems Demonstrated at Tai Hu. Future City, 2019, , 91-110.	0.5	1
67	The toxic potentials and focus of disinfection byproducts based on the human embryonic kidney (HEK293) cell model. Science of the Total Environment, 2019, 664, 948-957.	8.0	17
68	Targeted modulation of g-C3N4 photocatalytic performance for pharmaceutical pollutants in water using ZnFe-LDH derived mixed metal oxides: Structure-activity and mechanism. Science of the Total Environment, 2019, 650, 1112-1121.	8.0	70
69	Trace determination and occurrence of eight chlorophenylacetonitriles: An emerging class of aromatic nitrogenous disinfection byproducts in drinking water. Chemosphere, 2019, 220, 858-865.	8.2	35
70	Efficient removal of several estrogens in water by Fe-hydrochar composite and related interactive effect mechanism of H2O2 and iron with persistent free radicals from hydrochar of pinewood. Science of the Total Environment, 2019, 658, 1013-1022.	8.0	51
71	Effect of reduced sulfur group on the formation of CX3R-type disinfection by-products during chlor(am)ination of reduced sulfur compounds. Chemical Engineering Journal, 2019, 361, 227-234.	12.7	10
72	Sex-dependent effects of sulfamethoxazole exposure on pro-/anti-oxidant status with stimulation on growth, behavior and reproduction in the amphipod Hyalella azteca. Environmental Pollution, 2019, 244, 398-404.	7. 5	26

#	Article	IF	CITATIONS
73	Visible-light degradation of sulfonamides by Z-scheme ZnO/g-C3N4 heterojunctions with amorphous Fe2O3 as electron mediator. Journal of Colloid and Interface Science, 2019, 538, 256-266.	9.4	110
74	Quantifying hydrophobicity of natural organic matter using partition coefficients in aqueous two-phase systems. Chemosphere, 2019, 218, 922-929.	8.2	22
75	Characterization methods of zerovalent iron for water treatment and remediation. Water Research, 2019, 148, 70-85.	11.3	99
76	Occurrence and distribution of antibiotic resistance genes in the water and sediments of Qingcaosha Reservoir, Shanghai, China. Environmental Sciences Europe, 2019, 31, .	5.5	45
77	Neurobehavioral effects of two metabolites of BDE-47 (6-OH-BDE-47 and 6-MeO-BDE-47) on zebrafish larvae. Chemosphere, 2018, 200, 30-35.	8.2	16
78	Enhanced adsorption performance of aspartic acid intercalated Mg-Zn-Fe-LDH materials for arsenite. Dalton Transactions, 2018, 47, 4994-5004.	3.3	25
79	Nanomaterials Saferâ€byâ€Design: An Environmental Safety Perspective. Advanced Materials, 2018, 30, e1705691.	21.0	58
80	Safety of Nanomaterials: Nanomaterials Safer-by-Design: An Environmental Safety Perspective (Adv.) Tj ETQq0 C	0 rgBT /0	verlock 10 Tf
81	Reductive dechlorination of haloacetamides in drinking water by Cu/Fe bimetal. Separation and Purification Technology, 2018, 203, 226-232.	7.9	24
82	Bioaccumulation, distribution and elimination of lindane in Eisenia foetida: The aging effect. Chemosphere, 2018, 190, 350-357.	8.2	20
83	Pollutants in Plastics within the North Pacific Subtropical Gyre. Environmental Science & Emp; Technology, 2018, 52, 446-456.	10.0	121
84	Electrochemical simulation of triclosan metabolism and toxicological evaluation. Science of the Total Environment, 2018, 622-623, 1193-1201.	8.0	24
85	Occurrence and Stability of Chlorophenylacetonitriles: A New Class of Nitrogenous Aromatic DBPs in Chlorinated and Chloraminated Drinking Waters. Environmental Science and Technology Letters, 2018, 5, 394-399.	8.7	62
86	Antibiotic Resistome Associated with Small-Scale Poultry Production in Rural Ecuador. Environmental Science & Environmental Sc	10.0	40
87	Effects of food availability on the trade-off between growth and antioxidant responses in Caenorhabditis elegans exposed to sulfonamide antibiotics. Chemosphere, 2018, 211, 278-285.	8.2	19
88	Primer set 2.0 for highly parallel qPCR array targeting antibiotic resistance genes and mobile genetic elements. FEMS Microbiology Ecology, 2018, 94, .	2.7	95
89	Multi-generational effects of lindane on nematode lipid metabolism with disturbances on insulin-like signal pathway. Chemosphere, 2018, 210, 607-614.	8.2	29
90	Environmental risks of ZnO nanoparticle exposure on Microcystis aeruginosa: Toxic effects and environmental feedback. Aquatic Toxicology, 2018, 204, 19-26.	4.0	55

#	Article	IF	Citations
91	Dissolved Mineral Ash Generated by Vegetation Fire Is Photoactive under the Solar Spectrum. Environmental Science & Environmen	10.0	29
92	Sulfamethoxazole and COD increase abundance of sulfonamide resistance genes and change bacterial community structures within sequencing batch reactors. Chemosphere, 2017, 175, 21-27.	8.2	66
93	The decreasing aggregation of nanoscale zero-valent iron induced by trivalent chromium. Environmental Chemistry, 2017, 14, 99.	1.5	4
94	Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity. Science of the Total Environment, 2017, 584-585, 1022-1031.	8.0	481
95	Vision, Color Vision, and Visually Guided Behavior: The Novel Toxicological Targets of 2,2′,4,4′-Tetrabromodiphenyl Ether (BDE-47). Environmental Science and Technology Letters, 2017, 4, 132-136.	8.7	31
96	Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: Formation potential and integrated toxicity. Journal of Environmental Sciences, 2017, 58, 322-330.	6.1	78
97	Early developmental exposure to pentachlorophenol causes alterations on mRNA expressions of caspase protease family in zebrafish embryos. Chemosphere, 2017, 180, 141-148.	8.2	6
98	Effects of three different embryonic exposure modes of 2, $2\hat{a} \in ^2$, 4, $4\hat{a} \in ^2$ -tetrabromodiphenyl ether on the path angle and social activity of zebrafish larvae. Chemosphere, 2017, 169, 542-549.	8.2	26
99	Distribution and relevance of iodinated X-ray contrast media and iodinated trihalomethanes in an aquatic environment. Chemosphere, 2017, 184, 253-260.	8.2	37
100	The Toxicity of Nanoparticles to Algae. Nanomedicine and Nanotoxicology, 2017, , 1-20.	0.2	3
101	Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish. Science of the Total Environment, 2017, 609, 1312-1321.	8.0	329
102	Trans-generational influences of sulfamethoxazole on lifespan, reproduction and population growth of Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 2017, 135, 312-318.	6.0	44
103	The Regulatory Roles of MicroRNA in Effects of 2,2'4,4'-Tetrabromodiphenyl Ether (BDE47) on the Transcriptome of Zebrafish Larvae. PLoS ONE, 2017, 12, e0169599.	2.5	8
104	Determination of illicit drugs in aqueous environmental samples by online solid-phase extraction coupled to liquid chromatography–tandem mass spectrometry. Chemosphere, 2016, 160, 208-215.	8.2	28
105	Since 2015 the SinoGerman research project SIGN supports water quality improvement in the Taihu region, China. Environmental Sciences Europe, 2016, 28, 24.	5.5	15
106	The developmental effects of pentachlorophenol on zebrafish embryos during segmentation: A systematic view. Scientific Reports, 2016, 6, 25929.	3.3	18
107	Microbial dechlorination of HCB, PCP, PCB180, HCH and PCE in a Yangtze Three Gorges Reservoir enrichment culture, China. Environmental Earth Sciences, 2016, 75, 1.	2.7	16
108	Effect of subcellular distribution on nC60 uptake and transfer efficiency from Scenedesmus obliquus to Daphnia magna. Ecotoxicology and Environmental Safety, 2016, 128, 213-221.	6.0	21

#	Article	IF	Citations
109	Phthalate monoesters as markers of phthalate contamination in wild marine organisms. Environmental Pollution, 2016, 218, 410-418.	7.5	84
110	Zero valent iron produces dichloroacetamide from chloramphenicol antibiotics in the absence of chlorine and chloramines. Water Research, 2016, 104, 254-261.	11.3	35
111	Water temperature significantly impacts the formation of iodinated haloacetamides during persulfate oxidation. Water Research, 2016, 98, 47-55.	11.3	36
112	Fullerene inhibits benzo(a)pyrene Efflux from Cyprinus carpio hepatocytes by affecting cell membrane fluidity and P-glycoprotein expression. Aquatic Toxicology, 2016, 174, 36-45.	4.0	18
113	Contribution of the Antibiotic Chloramphenicol and Its Analogues as Precursors of Dichloroacetamide and Other Disinfection Byproducts in Drinking Water. Environmental Science & Empty (2016, 50, 388-396.	10.0	84
114	Characteristics of the alkylphenol and bisphenol A distributions in marine organisms and implications for human health: A case study of the East China Sea. Science of the Total Environment, 2016, 539, 460-469.	8.0	61
115	The formation of haloacetamides and other disinfection by-products from non-nitrogenous low-molecular weight organic acids during chloramination. Chemical Engineering Journal, 2016, 285, 164-171.	12.7	43
116	Multigenerational Effects of Heavy Metals on Feeding, Growth, Initial Reproduction and Antioxidants in Caenorhabditis elegans. PLoS ONE, 2016, 11, e0154529.	2.5	22
117	Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides. Scientific Reports, 2015, 5, 14412.	3.3	25
118	Oxidation of nanoscale zero-valent iron under sufficient and limited dissolved oxygen: Influences on aggregation behaviors. Chemosphere, 2015, 122, 8-13.	8.2	34
119	High-throughput RNA sequencing reveals the effects of $2,2\hat{a}\in ^2,4,4\hat{a}\in ^2$ -tetrabromodiphenyl ether on retina and bone development of zebrafish larvae. BMC Genomics, 2015, 16, 23.	2.8	42
120	Comparison of free amino acids and short oligopeptides for the formation of trihalomethanes and haloacetonitriles during chlorination: Effect of peptide bond and pre-oxidation. Chemical Engineering Journal, 2015, 281, 623-631.	12.7	60
121	Combined effects of graphene oxide and Cd on the photosynthetic capacity and survival of Microcystis aeruginosa. Science of the Total Environment, 2015, 532, 154-161.	8.0	112
122	Structure-dependent activities of polybrominated diphenyl ethers and hydroxylated metabolites on zebrafish retinoic acid receptor. Environmental Science and Pollution Research, 2015, 22, 1723-1730.	5.3	15
123	Fullereneâ€associated phenanthrene contributes to bioaccumulation but is not toxic to fish. Environmental Toxicology and Chemistry, 2015, 34, 1023-1030.	4.3	18
124	The combinational effects between sulfonamides and metals on nematode Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 2015, 111, 66-71.	6.0	22
125	The effects of humic acid on the uptake and depuration of fullerene aqueous suspensions in two aquatic organisms. Environmental Toxicology and Chemistry, 2014, 33, 1090-1097.	4.3	33
126	Impact of UV/H ₂ O ₂ Pre-Oxidation on the Formation of Haloacetamides and Other Nitrogenous Disinfection Byproducts during Chlorination. Environmental Science & Environmental Scie	10.0	123

#	Article	IF	Citations
127	The effect of nC 60 on tissue distribution of ibuprofen in Cyprinus carpio. Science of the Total Environment, 2014, 496, 453-460.	8.0	11
128	Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China. Science of the Total Environment, 2014, 493, 626-631.	8.0	152
129	Dietary selenium protect against redox-mediated immune suppression induced by methylmercury exposure. Food and Chemical Toxicology, 2014, 72, 169-177.	3.6	34
130	Haloactamides versus halomethanes formation and toxicity in chloraminated drinking water. Journal of Hazardous Materials, 2014, 274, 156-163.	12.4	49
131	Pentachlorophenol exposure causes Warburg-like effects in zebrafish embryos at gastrulation stage. Toxicology and Applied Pharmacology, 2014, 277, 183-191.	2.8	29
132	Combined effects of aqueous suspensions of fullerene and humic acid on the availability of polycyclic aromatic hydrocarbons: Evaluated with negligible depletion solid-phase microextraction. Science of the Total Environment, 2014, 493, 12-21.	8.0	19
133	A docking-based receptor library of antibiotics and its novel application in predicting chronic mixture toxicity for environmental risk assessment. Environmental Monitoring and Assessment, 2013, 185, 4513-4527.	2.7	22
134	Using molecular docking-based binding energy to predict toxicity of binary mixture with different binding sites. Chemosphere, 2013, 92, 1169-1176.	8.2	30
135	Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China. Science of the Total Environment, 2013, 458-460, 267-272.	8.0	299
136	Alleviating versus stimulating effects of bicarbonate on the growth of Vallisneria natans under ammonia stress. Environmental Science and Pollution Research, 2013, 20, 5281-5288.	5.3	15
137	Linking nitrifying biofilm characteristics and nitrification performance in moving-bed biofilm reactors for polluted raw water pretreatment. Bioresource Technology, 2013, 146, 416-425.	9.6	22
138	Inhibitions on the behavior and growth of the nematode progeny after prenatal exposure to sulfonamides at micromolar concentrations. Journal of Hazardous Materials, 2013, 250-251, 198-203.	12.4	36
139	Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination. Journal of Hazardous Materials, 2013, 260, 806-812.	12.4	102
140	Transgenerational effects of heavy metals on L3 larva of Caenorhabditis elegans with greater behavior and growth inhibitions in the progeny. Ecotoxicology and Environmental Safety, 2013, 88, 178-184.	6.0	60
141	Solution by dilution?—A review on the pollution status of the Yangtze River. Environmental Science and Pollution Research, 2013, 20, 6934-6971.	5.3	108
142	Using Molecular Docking to Compare Toxicity of Reactive Chemicals to Freshwater and Marine Luminous Bacteria. Molecular Informatics, 2012, 31, 809-816.	2.5	13
143	Reduction of hexavalent chromium with scrap iron in a fixed bed reactor. Frontiers of Environmental Science and Engineering, 2012, 6, 761-769.	6.0	6
144	The joint effects of sulfonamides and their potentiator on Photobacterium phosphoreum: Differences between the acute and chronic mixture toxicity mechanisms. Chemosphere, 2012, 86, 30-35.	8.2	86

#	Article	IF	CITATIONS
145	Ozone–biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection by-products. Chemosphere, 2012, 86, 1087-1091.	8.2	122
146	Trace determination of 13 haloacetamides in drinking water using liquid chromatography triple quadrupole mass spectrometry with atmospheric pressure chemical ionization. Journal of Chromatography A, 2012, 1235, 178-181.	3.7	110
147	Formation of halogenated C-, N-DBPs from chlor(am)ination and UV irradiation of tyrosine in drinking water. Environmental Pollution, 2012, 161, 8-14.	7.5	143
148	Atomic charges of individual reactive chemicals in binary mixtures determine their joint effects: An example of cyanogenic toxicants and aldehydes. Environmental Toxicology and Chemistry, 2012, 31, 270-278.	4.3	15
149	Behavior toxicity to Caenorhabditis elegans transferred to the progeny after exposure to sulfamethoxazole at environmentally relevant concentrations. Journal of Environmental Sciences, 2011, 23, 294-300.	6.1	44
150	Combined effects of titanium dioxide and humic acid on the bioaccumulation of cadmium in Zebrafish. Environmental Pollution, 2011, 159, 1151-1158.	7.5	53
151	Impacts of drinking water pretreatments on the formation of nitrogenous disinfection by-products. Bioresource Technology, 2011, 102, 11161-11166.	9.6	77
152	Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China. Chemosphere, 2011, 82, 822-828.	8.2	393
153	Metal contents and fractionation in contaminated soil after column leaching using [S, S]-EDDS. Chemical Speciation and Bioavailability, 2010, 22, 247-255.	2.0	8
154	Toxicity Prediction of Antibiotics on Luminescent Bacteria, Photobacterium phosphoreum, Based on Their Quantitative Structure–Activity Relationship Models. Bulletin of Environmental Contamination and Toxicology, 2010, 85, 550-555.	2.7	26
155	Bioavailability of organochlorine compounds in aqueous suspensions of fullerene: Evaluated with medaka (Oryzias latipes) and negligible depletion solid-phase microextraction. Chemosphere, 2010, 80, 693-700.	8.2	24
156	Quantitative structure-activity relationships of selected phenols with non-monotonic dose-response curves. Science Bulletin, 2009, 54, 1786-1796.	9.0	3
157	Catalytic Hydrogenation of Aqueous Nitrate over Pdâ^'Cu/ZrO ₂ Catalysts. Industrial & Engineering Chemistry Research, 2009, 48, 8356-8363.	3.7	36
158	Pentachlorophenol treatment in vivo elevates point mutation rate in zebrafish p53 gene. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2006, 609, 92-101.	1.7	24