Ernesto Bernal-Mizrachi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2393056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nutrient Sensor mTORC1 Regulates Insulin Secretion by Modulating β-Cell Autophagy. Diabetes, 2022, 71, 453-469.	0.3	6
2	Trimethylguanosine synthase 1 is a novel regulator of pancreatic beta-cell mass and function. Journal of Biological Chemistry, 2022, 298, 101592.	1.6	7
3	The Transcription Factor YY1 Is Essential for Normal DNA Repair and Cell Cycle in Human and Mouse β-Cells. Diabetes, 2022, 71, 1694-1705.	0.3	8
4	Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling. American Journal of Physiology - Endocrinology and Metabolism, 2022, 323, E133-E144.	1.8	3
5	Glucagon Resistance and Decreased Susceptibility to Diabetes in a Model of Chronic Hyperglucagonemia. Diabetes, 2021, 70, 477-491.	0.3	13
6	The RNA-binding protein LARP1 is dispensable for pancreatic β-cell function and mass. Scientific Reports, 2021, 11, 2079.	1.6	1
7	OGT Regulates Mitochondrial Biogenesis and Function via Diabetes Susceptibility Gene Pdx1. Diabetes, 2021, 70, 2608-2625.	0.3	12
8	Maternal High-Fat Diet During Pre-Conception and Gestation Predisposes Adult Female Offspring to Metabolic Dysfunction in Mice. Frontiers in Endocrinology, 2021, 12, 780300.	1.5	6
9	Maternal low-protein diet on the last week of pregnancy contributes to insulin resistance and β-cell dysfunction in the mouse offspring. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 319, R485-R496.	0.9	26
10	Pancreatic and duodenal homeobox-1 (PDX1) contributes to β-cell mass expansion and proliferation induced by Akt/PKB pathway. Islets, 2020, 12, 32-40.	0.9	19
11	Islet pericytes convert into profibrotic myofibroblasts in a mouse model of islet vascular fibrosis. Diabetologia, 2020, 63, 1564-1575.	2.9	23
12	Lactational metformin exposure programs offspring white adipose tissue glucose homeostasis and resilience to metabolic stress in a sex-dependent manner. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E600-E612.	1.8	13
13	Glucose stimulates microRNA-199 expression in murine pancreatic Î ² -cells. Journal of Biological Chemistry, 2020, 295, 1261-1270.	1.6	10
14	Glucose stimulates microRNA-199 expression in murine pancreatic β-cells. Journal of Biological Chemistry, 2020, 295, 1261-1270.	1.6	9
15	The regulatory G protein signaling complex, Gβ5–R7, promotes glucose- and extracellular signal–stimulated insulin secretion. Journal of Biological Chemistry, 2020, 295, 7213-7223.	1.6	5
16	Sexual dimorphism in hypothalamic inflammation in the offspring of dams exposed to a diet rich in high fat and branched-chain amino acids. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E526-E534.	1.8	13
17	Steroid-Free Immune Suppression Impairs Glycemic Control in a Healthy Cynomolgus Monkey. Cell Transplantation, 2019, 28, 262-268.	1.2	4
18	Hypusine biosynthesis in \hat{l}^2 cells links polyamine metabolism to facultative cellular proliferation to maintain glucose homeostasis. Science Signaling, 2019, 12.	1.6	37

Ernesto Bernal-Mizrachi

#	Article	IF	CITATIONS
19	mTORC1-to-AMPK switching underlies β cell metabolic plasticity during maturation and diabetes. Journal of Clinical Investigation, 2019, 129, 4124-4137.	3.9	80
20	Gestational exposure to metformin programs improved glucose tolerance and insulin secretion in adult male mouse offspring. Scientific Reports, 2018, 8, 5745.	1.6	17
21	Androgen excess in pancreatic \hat{l}^2 cells and neurons predisposes female mice to type 2 diabetes. JCI Insight, 2018, 3, .	2.3	49
22	Inhibition of mTORC1 by ER stress impairs neonatal β-cell expansion and predisposes to diabetes in the Akita mouse. ELife, 2018, 7, .	2.8	39
23	Interrupted Glucagon Signaling Reveals Hepatic α Cell Axis and Role for L-Glutamine in α Cell Proliferation. Cell Metabolism, 2017, 25, 1362-1373.e5.	7.2	153
24	Overexpression of Kinase-Dead mTOR Impairs Glucose Homeostasis by Regulating Insulin Secretion and Not β-Cell Mass. Diabetes, 2017, 66, 2150-2162.	0.3	42
25	Role of nutrients and mTOR signaling in the regulation of pancreatic progenitors development. Molecular Metabolism, 2017, 6, 560-573.	3.0	40
26	Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing. Nature Communications, 2017, 8, 16014.	5.8	125
27	Loss of mTORC1 signaling alters pancreatic $\hat{I}\pm$ cell mass and impairs glucagon secretion. Journal of Clinical Investigation, 2017, 127, 4379-4393.	3.9	44
28	4E-BP2/SH2B1/IRS2 Are Part of a Novel Feedback Loop That Controls β-Cell Mass. Diabetes, 2016, 65, 2235-2248.	0.3	13
29	Early pancreatic islet fate and maturation is controlled through RBP-Jκ. Scientific Reports, 2016, 6, 26874.	1.6	9
30	Noninvasivein vivoimaging of embryonic β-cell development in the anterior chamber of the eye. Islets, 2016, 8, 35-47.	0.9	4
31	Disruption of O-linked N-Acetylglucosamine Signaling Induces ER Stress and \hat{I}^2 Cell Failure. Cell Reports, 2015, 13, 2527-2538.	2.9	51
32	Human \hat{I}^2 -Cell Proliferation and Intracellular Signaling: Part 3. Diabetes, 2015, 64, 1872-1885.	0.3	120
33	Natural history of Î ² -cell adaptation and failure in type 2 diabetes. Molecular Aspects of Medicine, 2015, 42, 19-41.	2.7	183
34	Molecular aspects of pancreatic beta cell failure and diabetes. Molecular Aspects of Medicine, 2015, 42, 1-2.	2.7	4
35	Cyclin C stimulates β-cell proliferation in rat and human pancreatic β-cells. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E450-E459.	1.8	5
36	Transient early food restriction leads to hypothalamic changes in the long-lived crowded litter female mice. Physiological Reports, 2015, 3, e12379.	0.7	18

#	Article	IF	CITATIONS
37	S6K1 controls pancreatic Î ² cell size independently of intrauterine growth restriction. Journal of Clinical Investigation, 2015, 125, 2736-2747.	3.9	23
38	Long-lived crowded-litter mice exhibit lasting effects on insulin sensitivity and energy homeostasis. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1305-E1314.	1.8	32
39	Exposure of mouse embryonic pancreas to metformin enhances the number of pancreatic progenitors. Diabetologia, 2014, 57, 2566-2575.	2.9	20
40	Human β-Cell Proliferation and Intracellular Signaling Part 2: Still Driving in the Dark Without a Road Map. Diabetes, 2014, 63, 819-831.	0.3	155
41	Maternal diet–induced microRNAs and mTOR underlie β cell dysfunction in offspring. Journal of Clinical Investigation, 2014, 124, 4395-4410.	3.9	96
42	mTORC1 signaling and regulation of pancreatic \hat{l}^2 -cell mass. Cell Cycle, 2012, 11, 1892-1902.	1.3	74
43	Glucose and Fatty Acids Synergize to Promote B-Cell Apoptosis through Activation of Glycogen Synthase Kinase 3β Independent of JNK Activation. PLoS ONE, 2011, 6, e18146.	1.1	41
44	Conditional Gene Targeting in Mouse Pancreatic β-Cells. Diabetes, 2010, 59, 3090-3098.	0.3	288
45	Decreased IRS Signaling Impairs β-Cell Cycle Progression and Survival in Transgenic Mice Overexpressing S6K in I²-Cells. Diabetes, 2010, 59, 2390-2399.	0.3	58
46	Transgenic Overexpression of Active Calcineurin in β-Cells Results in Decreased β-Cell Mass and Hyperglycemia. PLoS ONE, 2010, 5, e11969.	1.1	33
47	mTORC1 Activation Regulates β-Cell Mass and Proliferation by Modulation of Cyclin D2 Synthesis and Stability. Journal of Biological Chemistry, 2009, 284, 7832-7842.	1.6	105
48	Akt and PTEN: β-cell mass and pancreas plasticity. Trends in Endocrinology and Metabolism, 2009, 20, 243-251.	3.1	80
49	Inhibition of Foxo1 Protects Pancreatic Islet β-Cells Against Fatty Acid and Endoplasmic Reticulum Stress–Induced Apoptosis. Diabetes, 2008, 57, 846-859.	0.3	204
50	Genetic Deficiency of Glycogen Synthase Kinase-3Î ² Corrects Diabetes in Mouse Models of Insulin Resistance. PLoS Biology, 2008, 6, e37.	2.6	96
51	Disruption of Tsc2 in pancreatic β cells induces β cell mass expansion and improved glucose tolerance in a TORC1-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9250-9255.	3.3	175
52	Neurofibromatosis-1 Regulates Neuronal and Glial Cell Differentiation from Neuroglial Progenitors InÂVivo by Both cAMP- and Ras-Dependent Mechanisms. Cell Stem Cell, 2007, 1, 443-457.	5.2	180
53	Akt Induces Â-Cell Proliferation by Regulating Cyclin D1, Cyclin D2, and p21 Levels and Cyclin-Dependent Kinase-4 Activity. Diabetes, 2006, 55, 318-325.	0.3	186
54	Insulin protects islets from apoptosis via Pdx1 and specific changes in the human islet proteome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19575-19580.	3.3	174

#	Article	IF	CITATIONS
55	Glucose Regulates Foxo1 Through Insulin Receptor Signaling in the Pancreatic Islet Â-cell. Diabetes, 2006, 55, 1581-1591.	0.3	112
56	Differential Effects of p27 in Regulation of Â-Cell Mass During Development, Neonatal Period, and Adult Life. Diabetes, 2006, 55, 3520-3528.	0.3	50
57	Suppressed Insulin Signaling and Increased Apoptosis in Cd38-Null Islets. Diabetes, 2006, 55, 2737-2746.	0.3	47
58	Endoplasmic Reticulum Stress-Induced Apoptosis Is Partly Mediated by Reduced Insulin Signaling Through Phosphatidylinositol 3-Kinase/Akt and Increased Glycogen Synthase Kinase-3Â in Mouse Insulinoma Cells. Diabetes, 2005, 54, 968-975.	0.3	158
59	Reduced Expression of the Insulin Receptor in Mouse Insulinoma (MIN6) Cells Reveals Multiple Roles of Insulin Signaling in Gene Expression, Proliferation, Insulin Content, and Secretion. Journal of Biological Chemistry, 2005, 280, 4992-5003.	1.6	86
60	Increased dosage of mammalian Sir2 in pancreatic β cells enhances glucose-stimulated insulin secretion in mice. Cell Metabolism, 2005, 2, 105-117.	7.2	575
61	Glucose and Insulin Treatment of Insulinoma Cells Results in Transcriptional Regulation of a Common Set of Genes. Diabetes, 2004, 53, 1496-1508.	0.3	48
62	Defective insulin secretion and increased susceptibility to experimental diabetes are induced by reduced Akt activity in pancreatic islet β cells. Journal of Clinical Investigation, 2004, 114, 928-936.	3.9	180
63	Defective insulin secretion and increased susceptibility to experimental diabetes are induced by reduced Akt activity in pancreatic islet 1² cells. Journal of Clinical Investigation, 2004, 114, 928-936.	3.9	148
64	Gene expression profiling in islet biology and diabetes research. Diabetes/Metabolism Research and Reviews, 2003, 19, 32-42.	1.7	23
65	Activation of Nuclear Factor-ÂB by Depolarization and Ca2+ Influx in MIN6 Insulinoma Cells. Diabetes, 2002, 51, S484-S488.	0.3	30
66	Glucose promotes pancreatic islet β-cell survival through a PI 3-kinase/Akt-signaling pathway. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E784-E793.	1.8	100
67	Islet β cell expression of constitutively active Akt1/PKBα induces striking hypertrophy, hyperplasia, and hyperinsulinemia. Journal of Clinical Investigation, 2001, 108, 1631-1638.	3.9	324
68	Activation of Serum Response Factor in the Depolarization Induction of Egr-1 Transcription in Pancreatic Islet β-Cells. Journal of Biological Chemistry, 2000, 275, 25681-25689.	1.6	61
69	Calpain 10: the first positional cloning of a gene for type 2 diabetes?. Journal of Clinical Investigation, 2000, 106, 819-821.	3.9	29
70	A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nature Genetics, 1998, 20, 143-148.	9.4	654