
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2392868/publications.pdf Version: 2024-02-01

IAMES | RELL

#	Article	IF	CITATIONS
1	The functional roles of marine sponges. Estuarine, Coastal and Shelf Science, 2008, 79, 341-353.	2.1	568
2	Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME Journal, 2012, 6, 564-576.	9.8	508
3	Could some coral reefs become sponge reefs as our climate changes?. Global Change Biology, 2013, 19, 2613-2624.	9.5	261
4	The sponge microbiome project. GigaScience, 2017, 6, 1-7.	6.4	193
5	Evaluating the core microbiota in complex communities: A systematic investigation. Environmental Microbiology, 2017, 19, 1450-1462.	3.8	187
6	High connectivity of Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. Marine Ecology - Progress Series, 2008, 353, 213-224.	1.9	164
7	Ecology of sponge assemblages (Porifera) in the Wakatobi region, south-east Sulawesi, Indonesia: richness and abundance. Journal of the Marine Biological Association of the United Kingdom, 2004, 84, 581-591.	0.8	113
8	Sediment impacts on marine sponges. Marine Pollution Bulletin, 2015, 94, 5-13.	5.0	109
9	The influences of bathymetry and flow regime upon the morphology of sublittoral sponge communities. Journal of the Marine Biological Association of the United Kingdom, 2000, 80, 707-718.	0.8	101
10	Influence of environmental variation on symbiotic bacterial communities of two temperate sponges. FEMS Microbiology Ecology, 2014, 88, 516-527.	2.7	91
11	Sponges to Be Winners under Near-Future Climate Scenarios. BioScience, 2018, 68, 955-968.	4.9	85
12	Diel trophic structuring of seagrass bed fish assemblages in the Wakatobi Marine National Park, Indonesia. Estuarine, Coastal and Shelf Science, 2007, 72, 81-88.	2.1	83
13	Interactive effects of temperature and <scp><i>p</i>CO</scp> ₂ on sponges: from the cradle to the grave. Global Change Biology, 2017, 23, 2031-2046.	9.5	79
14	Sponge Grounds as Key Marine Habitats: A Synthetic Review of Types, Structure, Functional Roles, and Conservation Concerns. , 2017, , 145-183.		72
15	Structuring of Indo-Pacific fish assemblages along the mangrove–seagrass continuum. Aquatic Biology, 2009, 5, 85-95.	1.4	67
16	Reduced Diversity and High Sponge Abundance on a Sedimented Indo-Pacific Reef System: Implications for Future Changes in Environmental Quality. PLoS ONE, 2014, 9, e85253.	2.5	67
17	Economic and subsistence values of the standing stocks of seagrass fisheries: Potential benefits of no-fishing marine protected area management. Ocean and Coastal Management, 2010, 53, 218-224.	4.4	64
18	Tidal fish connectivity of reef and sea grass habitats in the Indo-Pacific. Journal of the Marine Biological Association of the United Kingdom, 2007, 87, 1287-1296.	0.8	57

JAMES J BELL

#	Article	IF	CITATIONS
19	Climate change alterations to ecosystem dominance: how might spongeâ€dominated reefs function?. Ecology, 2018, 99, 1920-1931.	3.2	56
20	A sponge diversity centre within a marine â€~island'. , 2000, 440, 55-64.		55
21	Global conservation status of sponges. Conservation Biology, 2015, 29, 42-53.	4.7	55
22	Estimates of Particulate Organic Carbon Flowing from the Pelagic Environment to the Benthos through Sponge Assemblages. PLoS ONE, 2012, 7, e29569.	2.5	53
23	Sponge Grounds as Key Marine Habitats: A Synthetic Review of Types, Structure, Functional Roles, and Conservation Concerns. , 2015, , 1-39.		52
24	Sponge morphological diversity: a qualitative predictor of species diversity?. Aquatic Conservation: Marine and Freshwater Ecosystems, 2001, 11, 109-121.	2.0	50
25	The contribution of scarid herbivory to seagrass ecosystem dynamics in the Indo-Pacific. Estuarine, Coastal and Shelf Science, 2007, 74, 53-62.	2.1	50
26	Tolerance of Sponge Assemblages to Temperature Anomalies: Resilience and Proliferation of Sponges following the 1997–8 El-Niño Southern Oscillation. PLoS ONE, 2013, 8, e76441.	2.5	46
27	The distribution and prevalence of sponges in relation to environmental gradients within a temperate sea lough: vertical cliff surfaces. Diversity and Distributions, 2000, 6, 283-303.	4.1	42
28	The distribution and prevalence of sponges in relation to environmental gradients within a temperate sea lough: inclined cliff surfaces. Diversity and Distributions, 2000, 6, 305-323.	4.1	41
29	Impacts of the invasive ascidian Didemnum vexillum on green-lipped mussel Perna canaliculus aquaculture in New Zealand. Aquaculture Environment Interactions, 2013, 4, 17-30.	1.8	41
30	Contrasting patterns of species and functional composition of coral reef sponge assemblages. Marine Ecology - Progress Series, 2007, 339, 73-81.	1.9	40
31	Low genetic diversity in a marine nature reserve: re-evaluating diversity criteria in reserve design. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1067-1074.	2.6	39
32	Connectivity between island Marine Protected Areas and the mainland. Biological Conservation, 2008, 141, 2807-2820.	4.1	36
33	Resilience to Disturbance Despite Limited Dispersal and Self-Recruitment in Tropical Barrel Sponges: Implications for Conservation and Management. PLoS ONE, 2014, 9, e91635.	2.5	35
34	Elucidating the sponge stress response; lipids and fatty acids can facilitate survival under future climate scenarios. Global Change Biology, 2018, 24, 3130-3144.	9.5	32
35	Testing the consistency of connectivity patterns for a widely dispersing marine species. Heredity, 2013, 111, 345-354.	2.6	31
36	The use of volunteers for conducting sponge biodiversity assessments and monitoring using a morphological approach on Indo-Pacific coral reefs. Aquatic Conservation: Marine and Freshwater Ecosystems, 2007, 17, 133-145.	2.0	30

#	Article	IF	CITATIONS
37	Sponge monitoring: Moving beyond diversity and abundance measures. Ecological Indicators, 2017, 78, 470-488.	6.3	30
38	The Sponge Community in a Semi-Submerged Temperate Sea Cave: Density, Diversity and Richness. Marine Ecology, 2002, 23, 297-311.	1.1	28
39	Factors influencing the density and morphometrics of the cup coral Caryophyllia smithii in Lough Hyne. Journal of the Marine Biological Association of the United Kingdom, 2000, 80, 437-441.	0.8	27
40	Ocean acidification in New Zealand waters: trends and impacts. New Zealand Journal of Marine and Freshwater Research, 2018, 52, 155-195.	2.0	27
41	Faunal relationships with seagrass habitat structure: a case study using shrimp from the Indo-Pacific. Marine and Freshwater Research, 2007, 58, 1008.	1.3	26
42	Lobsters as keystone: Only in unfished ecosystems?. Ecological Modelling, 2014, 275, 48-72.	2.5	26
43	Coastal sponge communities of the West Indian Ocean: taxonomic affinities, richness and diversity. African Journal of Ecology, 2002, 40, 337-349.	0.9	25
44	Metabolic responses of a phototrophic sponge to sedimentation supports transitions to sponge-dominated reefs. Scientific Reports, 2017, 7, 2725.	3.3	24
45	Morphological monitoring of subtidal sponge assemblages. Marine Ecology - Progress Series, 2006, 311, 79-91.	1.9	24
46	Branching dynamics of two species of arborescent demosponge: the effect of flow regime and bathymetry. Journal of the Marine Biological Association of the United Kingdom, 2002, 82, 279-294.	0.8	23
47	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2011 – 31 January 2012. Molecular Ecology Resources, 2012, 12, 570-572.	4.8	23
48	A method for genotype validation and primer assessment in heterozygote-deficient species, as demonstrated in the prosobranch mollusc Hydrobia ulvae. BMC Genetics, 2008, 9, 55.	2.7	22
49	Restriction of sponges to an atoll lagoon as a result of reduced environmental quality. Marine Pollution Bulletin, 2013, 66, 209-220.	5.0	22
50	Outlier SNPs enable food traceability of the southern rock lobster, Jasus edwardsii. Marine Biology, 2016, 163, 1.	1.5	22
51	Interocean patterns in shallow water sponge assemblage structure and function. Biological Reviews, 2020, 95, 1720-1758.	10.4	22
52	Reproductive seasonality of the invasive ascidian Didemnum vexillum in New Zealand and implications for shellfish aquaculture. Aquaculture Environment Interactions, 2013, 3, 197-211.	1.8	22
53	Regeneration rates of a sublittoral demosponge. Journal of the Marine Biological Association of the United Kingdom, 2002, 82, 169-170.	0.8	21
54	Correlations between algal abundance, environmental variables and sponge distribution patterns on southern hemisphere temperate rocky reefs. Aquatic Biology, 2012, 16, 229-239.	1.4	21

#	Article	IF	CITATIONS
55	Natural dispersal mechanisms and dispersal potential of the invasive ascidian Didemnum vexillum. Biological Invasions, 2013, 15, 627-643.	2.4	21
56	Sponge richness on algae-dominated rocky reefs in the western Antarctic Peninsula and the Magellan Strait. Polar Research, 2016, 35, 30532.	1.6	21
57	Crossâ€generational effects of climate change on the microbiome of a photosynthetic sponge. Environmental Microbiology, 2020, 22, 4732-4744.	3.8	21
58	Coastal sponge communities of the West Indian Ocean: morphological richness and diversity. African Journal of Ecology, 2002, 40, 350-359.	0.9	20
59	Connectivity, small islands and large distances: the <i>Cellana strigilis</i> limpet complex in the Southern Ocean. Molecular Ecology, 2011, 20, 3399-3413.	3.9	20
60	Influence of canopy-forming algae on temperate sponge assemblages. Journal of the Marine Biological Association of the United Kingdom, 2016, 96, 351-362.	0.8	20
61	Outlier SNPs detect weak regional structure against a background of genetic homogeneity in the Eastern Rock Lobster, Sagmariasus verreauxi. Marine Biology, 2018, 165, 1.	1.5	20
62	A sponge diversity centre within a marine â€ĩisland'. , 2000, , 55-64.		20
63	Patterns of sponge biodiversity and abundance across different biogeographic regions. Marine Biology, 2008, 155, 563-570.	1.5	18
64	Indication of visitor trampling impacts on intertidal seagrass beds in a New Zealand marine reserve. Ocean and Coastal Management, 2015, 114, 145-150.	4.4	18
65	Photoacclimation supports environmental tolerance of a sponge to turbid low-light conditions. Coral Reefs, 2015, 34, 1049-1061.	2.2	18
66	Adaptive mechanisms and physiological effects of suspended and settled sediment on barrel sponges. Journal of Experimental Marine Biology and Ecology, 2017, 496, 74-83.	1.5	18
67	Similarity in connectivity patterns for two gastropod species lacking pelagic larvae. Marine Ecology - Progress Series, 2008, 357, 185-194.	1.9	18
68	Scleractinian settlement patterns to natural cleared reef substrata and artificial settlement panels on an Indonesian coral reef. Estuarine, Coastal and Shelf Science, 2011, 93, 80-85.	2.1	17
69	Sponges as agents of biological disturbance. Marine Ecology - Progress Series, 2008, 368, 127-135.	1.9	16
70	The ecology of sponges in Lough Hyne Marine Nature Reserve (south-west Ireland): past, present and future perspectives. Journal of the Marine Biological Association of the United Kingdom, 2007, 87, 1655-1668.	0.8	15
71	Nutrient utilisation by shallow water temperate sponges in New Zealand. Hydrobiologia, 2012, 687, 237-250.	2.0	15
72	Responses of two temperate sponge species to ocean acidification. New Zealand Journal of Marine and Freshwater Research, 2018, 52, 247-263.	2.0	15

#	Article	IF	CITATIONS
73	Short-term responses of tropical lagoon sponges to elevated temperature and nitrate. Marine Environmental Research, 2020, 157, 104922.	2.5	15
74	Adaptive strategies of sponges to deoxygenated oceans. Global Change Biology, 2022, 28, 1972-1989.	9.5	15
75	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 June 2011–31 July 2011. Molecular Ecology Resources, 2011, 11, 1124-1126.	4.8	14
76	Bioeroding sponge assemblages: the importance of substrate availability and sediment. Journal of the Marine Biological Association of the United Kingdom, 2019, 99, 343-358.	0.8	14
77	Responses of a common New Zealand coastal sponge to elevated suspended sediments: Indications of resilience. Marine Environmental Research, 2020, 155, 104886.	2.5	14
78	Efficiency of ddRAD target enriched sequencing across spiny rock lobster species (Palinuridae: Jasus). Scientific Reports, 2017, 7, 6781.	3.3	13
79	Modelling sponge species diversity using a morphological predictor: a tropical test of a temperate model. Journal for Nature Conservation, 2002, 10, 41-50.	1.8	12
80	Evaluation and optimisation of underwater visual census monitoring for quantifying change in rocky-reef fish abundance. Biological Conservation, 2015, 186, 326-336.	4.1	12
81	Spongivory in the Wakatobi Marine National Park, Southeast Sulawesi, Indonesia. Pacific Science, 2015, 69, 487-508.	0.6	12
82	Assessing the strength and sensitivity of the core microbiota approach on a highly diverse sponge reef. Environmental Microbiology, 2020, 22, 3985-3999.	3.8	12
83	Vulnerability of Temperate Mesophotic Ecosystems (TMEs) to environmental impacts: Rapid ecosystem changes at Lough Hyne Marine Nature Reserve, Ireland. Science of the Total Environment, 2021, 789, 147708.	8.0	12
84	Differential Responses of Emergent Intertidal Coral Reef Fauna to a Large-Scale El-Niño Southern Oscillation Event: Sponge and Coral Resilience. PLoS ONE, 2014, 9, e93209.	2.5	12
85	Cryptic species obscure introduction pathway of the blue Caribbean sponge (Haliclona(Soestella)caerulea), (order: Haplosclerida) to Palmyra Atoll, Central Pacific. PeerJ, 2015, 3, e1170.	2.0	11
86	Global status, impacts, and management of rocky temperate mesophotic ecosystems. Conservation Biology, 2024, 38, .	4.7	11
87	The influence of flow rate, depth and surface inclination on the density and the distribution of temperate anthozoa. Journal of the Marine Biological Association of the United Kingdom, 2001, 81, 883-884.	0.8	10
88	Factors controlling the tentacle and polyp expansion behaviour of selected temperate Anthozoa. Journal of the Marine Biological Association of the United Kingdom, 2006, 86, 977-992.	0.8	10
89	Hitching a ride on a hermit crabs home: Movement of gastropod shells inhabited by hermit crabs. Estuarine, Coastal and Shelf Science, 2009, 85, 173-178.	2.1	10
90	Successful Determination of Larval Dispersal Distances and Subsequent Settlement for Long-Lived Pelagic Larvae. PLoS ONE, 2012, 7, e32788.	2.5	10

#	Article	IF	CITATIONS
91	Near-future extreme temperatures affect physiology, morphology and recruitment of the temperate sponge Crella incrustans. Science of the Total Environment, 2022, 823, 153466.	8.0	10
92	Wide distributional range of marine sponges along the Pacific Ocean. Marine Biology Research, 2013, 9, 768-775.	0.7	9
93	Bleaching and recovery of a phototrophic bioeroding sponge. Coral Reefs, 2018, 37, 565-570.	2.2	9
94	Sedimentation limits the erosion rate of a bioeroding sponge. Marine Ecology, 2018, 39, e12483.	1.1	9
95	Growth and longevity in giant barrel sponges: Redwoods of the reef or Pines in the Indo-Pacific?. Scientific Reports, 2018, 8, 15317.	3.3	9
96	Seasonally Driven Sexual and Asexual Reproduction in Temperate <i>Tethya</i> Species. Biological Bulletin, 2020, 238, 89-105.	1.8	9
97	Temporal variation in food utilisation by three species of temperate demosponge. Marine Ecology - Progress Series, 2013, 485, 91-103.	1.9	9
98	Regime shifts on tropical coral reef ecosystems: future trajectories to animal-dominated states in response to anthropogenic stressors. Emerging Topics in Life Sciences, 2022, 6, 95-106.	2.6	9
99	Morphological responses of a cup coral to environmental gradients. Sarsia, 2002, 87, 319-330.	0.5	8
100	Temporal and spatial variability of mobile fauna on a submarine cliff and boulder scree complex: a community in flux. Hydrobiologia, 2003, 503, 171-182.	2.0	8
101	Seasonal †fall out' of sessile macro-fauna from submarine cliffs: quantification, causes and implications. Journal of the Marine Biological Association of the United Kingdom, 2003, 83, 1199-1208.	0.8	8
102	Temporal dynamics and persistence of sponge assemblages in a Central Pacific atoll lagoon. Marine Ecology, 2016, 37, 1147-1153.	1.1	7
103	Spatial Variation in a Shallow-Water Sponge-Dominated Reef in Timor-Leste (East Timor) . Pacific Science, 2018, 72, 233-244.	0.6	7
104	Spatial variation in the benthic community composition of coral reefs in the Wakatobi Marine National Park, Indonesia: updated baselines and limited benthic community shifts. Journal of the Marine Biological Association of the United Kingdom, 2020, 100, 37-44.	0.8	7
105	Global drivers of recent diversification in a marine species complex. Molecular Ecology, 2021, 30, 1223-1236.	3.9	7
106	Short-term physiological responses of the New Zealand deep-sea sponge Ecionemia novaezealandiae to elevated concentrations of suspended sediments. Journal of Experimental Marine Biology and Ecology, 2021, 541, 151579.	1.5	7
107	Density, distribution and decline of two species of unattached demosponge. Sarsia, 2002, 87, 110-118.	0.5	6
108	Testing the suitability of a morphological monitoring approach for identifying temporal variability in a temperate sponge assemblage. Journal for Nature Conservation, 2013, 21, 173-182.	1.8	6

#	Article	IF	CITATIONS
109	Isolation and characterisation of twelve polymorphic microsatellite markers for Xestospongia spp. and their use for confirming species identity. Conservation Genetics Resources, 2014, 6, 105-106.	0.8	6
110	Marine reserve establishment and on-going management costs: A case study from New Zealand. Marine Policy, 2015, 60, 216-224.	3.2	6
111	Modelling the effect of wave forces on subtidal macroalgae: A spatial evaluation of predicted disturbance for two habitat-forming species. Ecological Modelling, 2015, 313, 149-161.	2.5	6
112	Short-term temporal variability in a temperate sponge assemblage. Marine Biology, 2016, 163, 1.	1.5	6
113	In situ responses of the sponge microbiome to ocean acidification. FEMS Microbiology Ecology, 2018, 94, .	2.7	6
114	Hidden diversity in the genus Tethya: comparing molecular and morphological techniques for species identification. Heredity, 2019, 122, 354-369.	2.6	6
115	Climatic change drives dynamic source–sink relationships in marine species with high dispersal potential. Ecology and Evolution, 2021, 11, 2535-2550.	1.9	6
116	Variability in the spatial association patterns of sponge assemblages in response to environmental heterogeneity. Marine Biology, 2010, 157, 2503-2509.	1.5	5
117	Advancing our understanding of the connectivity, evolution and management of marine lobsters through genetics. Reviews in Fish Biology and Fisheries, 2019, 29, 669-687.	4.9	5
118	Evidence for genetic structuring and limited dispersal ability in the Great Barrier Reef sponge Carteriospongia foliascens. Coral Reefs, 2020, 39, 39-46.	2.2	5
119	Characterization of polymorphic microsatellite markers for the red rock lobster, Jasus edwardsii (Hutton 1875). Conservation Genetics Resources, 2012, 4, 319-321.	0.8	4
120	High connectivity between sea lough populations of a planktonic larval disperser with the adjacent open coast. Marine Ecology, 2012, 33, 516-521.	1.1	4
121	Impacts of Short-Term Large-Scale Climatic Variation on Sponge Assemblages. , 2017, , 143-177.		3
122	Photoacclimation to light-limitation in a clionaid sponge; implications for understanding sponge bioerosion on turbid reefs. Marine Pollution Bulletin, 2018, 135, 466-474.	5.0	3
123	Lobster fishery and marine reserve interactions in central New Zealand. Marine Policy, 2019, 105, 67-79.	3.2	3
124	Reproduction and early life stages of the poecilosclerid sponge Crella incrustans. Invertebrate Biology, 2021, 140, e12335.	0.9	3
125	Bioeroding sponge species from the Wakatobi region of southeast Sulawesi, Indonesia. Zootaxa, 2021, 4996, 1-48.	0.5	3
126	Phototrophic sponge productivity may not be enhanced in a high <scp>CO₂</scp> world. Global Change Biology, 2022, 28, 4900-4911.	9.5	3

#	Article	IF	CITATIONS
127	Low Functional Redundancy in Sponges as a Result of Differential Picoplankton Use. Biological Bulletin, 2013, 224, 29-34.	1.8	2
128	Temporal variability in tropical lagoon sponges from Mauritius (Western Indian Ocean). Marine Biodiversity, 2020, 50, 1.	1.0	2
129	Lough Hyne: Europe's First Statutory Marine Reserve—A Biodiversity Hotspot. , 2022, , 866-880.		2
130	Interannual variability and decadal stability of benthic organisms on an Indonesian coral reef. Journal of the United Kingdom, 2021, 101, 221-231.	0.8	2
131	Increased cellular detoxification, cytoskeletal activities and protein transport explain physiological stress in a lagoon sponge. Journal of Experimental Biology, 2021, 224, .	1.7	2
132	Reproductive isolation between two cryptic sponge species in New Zealand: high levels of connectivity and clonality shape Tethya species boundaries. Marine Biology, 2021, 168, 1.	1.5	1
133	Topics in Sponge Biology and Ecology. The Open Marine Biology Journal, 2010, 4, 1-2.	0.3	1
134	Rapid acclimation in sponges: seasonal variation in the organic content of two intertidal sponge species. Journal of the Marine Biological Association of the United Kingdom, 0, , 1-7.	0.8	1
135	Characterisation of novel microsatellite markers for the surf clams Paphies subtriangulata and P. australis (Bivalvia: Mesodesmatidae). Conservation Genetics Resources, 2014, 6, 315-317.	0.8	0
136	Future Research Directions and Gaps in Our Knowledge. , 2017, , 447-452.		0
137	Importance of philopatry and hydrodynamics in the recruitment of bioeroding sponges on Indonesian coral reefs. Marine and Freshwater Research, 2019, 70, 755.	1.3	0