Akihiro Wakisaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/239269/publications.pdf

Version: 2024-02-01

83 papers 2,213 citations

257450 24 h-index 233421 45 g-index

85 all docs 85 docs citations

85 times ranked 2028 citing authors

#	Article	IF	CITATIONS
1	Size-controlled Synthesis of Zeolitic Imidazolate Framework-67 (ZIF-67) Using Electrospray in Liquid Phase. Chemistry Letters, 2020, 49, 875-878.	1.3	2
2	A Reactor System Using Electrospray in the Liquid Phase and Its Application in Selective Cyclosiloxane Synthesis. Industrial & Engineering Chemistry Research, 2017, 56, 4878-4882.	3.7	5
3	Magnitude and Directionality of Halogen Bond of Benzene with C $<$ sub $>$ 6 $<$ /sub $>$ F $<$ sub $>$ 5 $<$ /sub $>$ X, C $<$ sub $>$ 6 $<$ /sub $>$ H $<$ sub $>$ 5 $<$ /sub $>X$, and CF $<$ sub $>$ 3 $<$ /sub $>$ X (X = I, Br, Cl, and F). Journal of Physical Chemistry A, 2016, 120, 7020-7029.	2.5	32
4	Selective Crystallization of Phosphoester Coordination Polymer for the Separation of Neodymium and Dysprosium: A Thermodynamic Approach. Journal of Physical Chemistry B, 2016, 120, 12730-12735.	2.6	17
5	Separation of neodymium and dysprosium by forming coordination polymers. Separation and Purification Technology, 2016, 157, 162-168.	7.9	17
6	Ln ³⁺ Adsorption into an Yttrium-Hdehp Coordination Polymer through Exchange with Coordinated Yttrium Ion. Solvent Extraction Research and Development, 2014, 21, 83-87.	0.4	1
7	Central metal ion exchange in a coordination polymer based on lanthanide ions and di(2-ethylhexyl)phosphoric acid: Exchange rate and tunable affinity. Journal of Colloid and Interface Science, 2014, 413, 65-70.	9.4	22
8	Steric effect involved in Ln ³⁺ /Ce ³⁺ exchange in a coordination polymer based on di(2-ethylhexyl)phosphoric acid. Dalton Transactions, 2014, 43, 1791-1796.	3.3	16
9	Molecular clustering inherent in the liquid state: Effect of relativity in intermolecular interaction energy. Journal of Molecular Liquids, 2014, 189, 44-51.	4.9	8
10	Lanthanide ion exchange properties of a coordination polymer consisting of di(2-ethylhexyl) phosphoric acid and trivalent metal ions (Ce3+, Fe3+, or Al3+). Dalton Transactions, 2014, 43, 4807.	3.3	20
11	Environmentally friendly separation of dysprosium and neodymium by fractional precipitation of coordination polymers. RSC Advances, 2014, 4, 20496-20498.	3.6	6
12	Data Mining of Supersecondary Structure Homology between Light Chains of Immunogloblins and MHC Molecules: Absence of the Common Conformational Fragment in the Human IgM Rheumatoid Factor. Journal of Chemical Information and Modeling, 2013, 53, 584-591.	5.4	9
13	CCSD(T) level interaction energy for halogen bond between pyridine and substituted iodobenzenes: origin and additivity of substituent effects. Physical Chemistry Chemical Physics, 2013, 15, 6088.	2.8	43
14	Tunable Selectivity of Lanthanide Ion Exchange within a Coordination Polymer. Analytical Sciences, 2013, 29, 685-687.	1.6	9
15	Preferential solvation of perfluorooctanoic acid (PFOA) by methanol in methanol–water mixtures: A potential overestimation of the dissociation constant of PFOA using a Yasuda–Shedlovsky plot. Atmospheric Environment, 2012, 49, 411-414.	4.1	21
16	Magnitude and Origin of the Attraction and Directionality of the Halogen Bonds of the Complexes of C ₆ F ₅ X and C ₆ H ₅ X (X=I, Br, Cl and F) with Pyridine. Chemistry - A European Journal, 2012, 18, 951-960.	3.3	118
17	Azeotropy of alcohol–water mixtures from the viewpoint of cluster-level structures. Journal of Molecular Liquids, 2011, 160, 103-108.	4.9	33
18	Relationship between the size of mist droplets and ethanol condensation efficiency at ultrasonic atomization on ethanol–water mixtures. AICHE Journal, 2010, 56, 810-814.	3.6	10

#	Article	IF	CITATIONS
19	Physicochemical Properties of Aqueous Solutions from the Viewpoint of Cluster Structures Analyzed by Mass Spectrometry. Bunseki Kagaku, 2010, 59, 743-758.	0.2	3
20	Continuous dispersion and size control of gas-phase fullerene C60 particles using a simple method. Micro and Nano Letters, 2010, 5, 193.	1.3	0
21	Enantiodifferentiating <i>endo</i> â€Selective Oxylactonization of <i>ortho</i> â€Alkâ€1â€enylbenzoate with a Lactateâ€Derived Arylâ€î» ³ â€lodane. Angewandte Chemie - International Edition, 2010, 49, 7068-70	o 7 13:8	183
22	Hydrogen-bonding self-association of 1-pentanol controlled by the relativity of interaction energies. Journal of Molecular Liquids, 2009, 149, 45-51.	4.9	14
23	Cluster Structure of Imidazolium Salts in Methanol Controlled by the Balance of Interactions: Cation-Anion, Cation-Solvent, and Anion-Solvent. Analytical Sciences, 2008, 24, 1311-1314.	1.6	9
24	Small-angle x-ray scattering measurement of a mist of ethanol nanodroplets: An approach to understanding ultrasonic separation of ethanol-water mixtures. Journal of Chemical Physics, 2007, 127, 031101.	3.0	24
25	Nucleation in alkali metal chloride solution observed at the cluster level. Faraday Discussions, 2007, 136, 299.	3.2	24
26	Small-angle X-ray scattering investigation of water droplets in mist. Journal of Applied Crystallography, 2007, 40, s318-s320.	4.5	3
27	Microscopic Structures in Water-propylene Glycol Monoalkyl Ether Binary Mixtures as Clarified by NMR and Mass Spectrometry. Journal of Oleo Science, 2006, 55, 647-652.	1.4	1
28	Binuclear \hat{l} 4-Perchlorato Complexes of Alkaline Earth Metal Ions Studied by Electrospray Ionization Mass Spectrometry and DFT Calculations. Chemistry Letters, 2006, 35, 1118-1119.	1.3	0
29	Microheterogeneity of ethanol–water binary mixtures observed at the cluster level. Journal of Molecular Liquids, 2006, 129, 25-32.	4.9	124
30	Direct Evidence of Ion-dipole Interaction between Imidazolium Cations and Polar Molecules in Ionic Liquid Solutions by Means of Mass Spectrometric Analysis of Clusters. Chemistry Letters, 2005, 34, 706-707.	1.3	4
31	Cluster structures determined by ion–molecular interactions: preferential solvation and acid–base neutralization. Journal of Molecular Liquids, 2005, 119, 195-200.	4.9	3
32	Solvation of Tetraalkylammonium Chlorides in Acetonitrile-Water Mixtures: Mass Spectrometry and Molecular Dynamics Simulations. ChemPhysChem, 2005, 6, 1307-1315.	2.1	22
33	Camphor Ionic Liquid:Â Correlation between Stereoselectivity and Cationâ [^] Anion Interaction. Journal of Organic Chemistry, 2005, 70, 10106-10108.	3.2	44
34	Clustering Structure of Aqueous Solution of Kinetic Inhibitor of Gas Hydrates. Journal of Physical Chemistry B, 2005, 109, 16879-16885.	2.6	15
35	Phase separation of water–alcohol binary mixtures induced by the microheterogeneity. Faraday Discussions, 2005, 129, 231-245.	3.2	96
36	Cluster Formation of 1-Butanol–Water Mixture Leading to Phase Separation. Journal of Solution Chemistry, 2004, 33, 721-732.	1.2	21

#	Article	lF	CITATIONS
37	Preferential Solvation and Self-Association in Alcoholâ-Acetonitrile Mixtures Observed through Mass Spectrometric Analysis of Clusters:Â Influence of Alkyl Chain Length. Journal of Physical Chemistry B, 2004, 108, 3479-3487.	2.6	24
38	Nature of the Chemical Bond Formed with the Structural Metal Ion at the A9/G10.1 Motif Derived from Hammerhead Ribozymes. Journal of the American Chemical Society, 2004, 126, 744-752.	13.7	28
39	Molecular Association in Binary Mixtures of tert-Butyl Alcoholâ^'Water and Tetrahydrofuranâ^'Heavy Water Studied by Mass Spectrometry of Clusters from Liquid Droplets. Journal of Physical Chemistry A, 2004, 108, 59-63.	2.5	41
40	Direct Observation of the Li+–18-Crown-6 Complex Working as H2O Capture in Acetone–Water Mixture. Chemistry Letters, 2004, 33, 214-215.	1.3	1
41	A mass spectrometric study of solvated clusters of ions and ion pairs generated from lithium halide solutions in polar solvents: Acetonitrile compared to methanol. Journal of Molecular Liquids, 2003, 103-104, 319-329.	4.9	17
42	Preferential Solvation of Na+ in N,N-Dimethylformamideâ^'Water Binary Mixture. Journal of Physical Chemistry B, 2003, 107, 11827-11829.	2.6	23
43	Interactions of a Nucleoside Cytidine with Metal lons in Water Observed through Mass Spectrometry:Â Clustering Controlled by Electrostatic Interaction and Coordinating Interaction. Journal of Physical Chemistry B, 2003, 107, 5612-5616.	2.6	8
44	Microscopic environment of metal ion controlled by the balance between preferential solvation and coordination. Chemical Communications, 2003, , 592-593.	4.1	5
45	Relation of Hydrophobic Effect with Salt Effect:  On the Viewpoint of Cluster Structure. Journal of Physical Chemistry B, 2002, 106, 899-901.	2.6	24
46	Solvation for Ions and Counterions:Â Complementary Relation between Ionâ^'Counterion and Ionâ^'Solvent Interaction. Journal of Physical Chemistry A, 2002, 106, 5095-5100.	2.5	25
47	Self-Association of m-Cresol in Aqueous Organic Solvents:  Relation to Enzymatic Polymerization Reaction. Journal of Physical Chemistry B, 2002, 106, 1421-1429.	2.6	25
48	Cluster Structures in Aqueous HNO3and H2SO4Solutions:Â In Relation with Equivalent Conductivity. Journal of Physical Chemistry A, 2002, 106, 4779-4783.	2.5	19
49	On the Origin of Microheterogeneity:Â Mass Spectrometric Studies of Acetonitrileâ^'Water and Dimethyl Sulfoxideâ^'Water Binary Mixtures (Part 2). Journal of Physical Chemistry B, 2002, 106, 6014-6020.	2.6	81
50	Complementary Relation between Ionâ^'Counterion and Ionâ^'Solvent Interaction in Lithium Halideâ^'Methanol Solutions. Journal of Physical Chemistry A, 2002, 106, 8059-8065.	2.5	28
51	On the Origin of Microheterogeneity:  A Mass Spectrometric Study of Dimethyl Sulfoxideâ^Water Binary Mixture. Journal of Physical Chemistry B, 2001, 105, 6759-6762.	2.6	103
52	First observation of clusters for solvated tropylium ions. Chemical Communications, 2001, , 1768-1769.	4.1	4
53	Solute-solvent and solvent-solvent interactions evaluated through clusters isolated from solutions: Preferential solvation in water-alcohol mixtures. Journal of Molecular Liquids, 2001, 90, 175-184.	4.9	110
54	Theoretical study on the structure and stability of the clusters of tropylium ion solvated by methanol molecules. Computational and Theoretical Chemistry, 2001, 574, 117-125.	1.5	1

#	Article	IF	CITATIONS
55	Experimental approach to see molecular clustering in electrolyte solutions: Mass spectrometric analysis of nitric acid and sulfuric acid solutions. Journal of Molecular Liquids, 2000, 88, 121-127.	4.9	9
56	Molecular Self-Assembling of Butan-1-ol, Butan-2-ol, and 2-Methylpropan-2-ol in Carbon Tetrachloride Solutions as Observed by Near-Infrared Spectroscopic Measurements. Applied Spectroscopy, 2000, 54, 268-276.	2.2	40
57	Effect of Inhibitor Methanol on the Microscopic Structure of Aqueous Solution. Annals of the New York Academy of Sciences, 2000, 912, 797-806.	3.8	7
58	Solvent effect on acid–base clustering between acetic acid and pyridine. Journal of the Chemical Society Perkin Transactions II, 1998, , 95-100.	0.9	16
59	Non-ideality of binary mixtures Water[ndash] methanol and water[ndash] acetonitrile from the viewpoint of clustering structure. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 369-374.	1.7	141
60	Acidâ€"base interaction from the viewpoint of molecular clustering Effects of solvent, pKa and size of alkyl group. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 547-552.	1.7	15
61	Preferential Association of 7-Azaindole Dimer in Acetonitrile Studied by Mass Spectrometry. Chemistry Letters, 1997, 26, 123-124.	1.3	1
62	Direct Observation of Acid-Base Interaction by Means of Mass Spectrometry for Clusters. Chemistry Letters, 1997, 26, 1097-1098.	1.3	1
63	Molecular self-assembly composed of aromatic hydrogen-bond donor[ndash]acceptor complexes. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 3813-3817.	1.7	11
64	Clustering of a hydrogen-bonding complex between indole and isoquinoline Correlation with nucleation of intermolecular compounds. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1405-1408.	1.7	3
65	Non-covalent binary interactions between some organic acids and bases. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 4289-4293.	1.7	12
66	Rigid or floppy water-containing dipole-bound dimer anions. Zeitschrift FÃ $\frac{1}{4}$ r Physik D-Atoms Molecules and Clusters, 1997, 40, 55-61.	1.0	13
67	Solvation-controlled clustering of a phenol–pyridine acid–base pair. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3339-3346.	1.7	24
68	Molecular self-assembly controlled by acid–base non-covalent interactions: a mass spectrometric study of some organic acids and bases. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3539-3544.	1.7	21
69	Diluted effects on n-propanol. Physica B: Condensed Matter, 1996, 219-220, 568-570.	2.7	2
70	Preferential solvation controlled by clustering conditions of acetonitrile–water mixtures. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 4063-4069.	1.7	57
71	Solvent Effects and Molecular Clusters: Especially in Aqueous Organic Solvents Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1994, 52, 478-487.	0.1	2
72	Reorganization of clusters through hydrophobic and hydrogen-bonding interaction in pyridine–phenol–water solution. Journal of the Chemical Society Chemical Communications, 1994, , 2105-2106.	2.0	12

#	Article	IF	CITATIONS
73	Clustering of a hydrogen-bonding complex between pyridine and pyrrole: correlation with nucleation of intermolecular compounds. Journal of the Chemical Society Chemical Communications, 1994, , 2727.	2.0	7
74	The simplest process in the growth of carbon clusters: C2 formation from C1 following laser vaporization of graphite. Journal of the Chemical Society Chemical Communications, 1993, , 77.	2.0	3
75	Carbon clusters vaporized directly from graphite through laser vaporization. Journal of the Chemical Society Chemical Communications, 1993, , 347.	2.0	4
76	Growth of carbon clusters. The simplest process, 2C1? C2, observed via spectrometry and chemical reaction. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 1001.	1.7	28
77	Energetics for carbon clusters produced directly by laser vaporization of graphite: dependence on laser power and wavelength. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 1667.	1.7	69
78	Interaction of hydrophobic molecules with water influenced by the clustering conditions of acetonitrile–water mixtures. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 1129-1135.	1.7	64
79	Energetics for preferential solvation of a chromium complex in aqueous organic solvent. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 2167.	1.7	5
80	Use of solid carbon dioxide to alleviate fluorescence quenching by oxygen. Analytical Chemistry, 1990, 62, 2654-2656.	6.5	3
81	Effect of water concentration on photoreduction of anthraquinone-2-sulfonate by 2-propanol in aqueous acetonitrile solution. The Journal of Physical Chemistry, 1987, 91, 6547-6551.	2.9	26
82	EOSIN Y SENSITIZED REDUCTION OF QUINONES TO THEIR PERSISTENT RADICAL ANIONS. Chemistry Letters, 1985, 14, 293-294.	1.3	3
83	USE OF ALCOHOL AS AN EFFICIENT REDUCTANT IN DYE SENSITIZED REDUCTION OF METHYL VIOLOGEN. Chemistry Letters, 1985, 14, 295-296.	1.3	2