
Santiago Aparicio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2392537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A study on monoterpenoid-based natural deep eutectic solvents. Green Chemical Engineering, 2023, 4, 99-114.	6.3	7
2	On the behavior of quercetinÂ+Âorganic solvent solutions and their role for C60 fullerene solubilization. Journal of Molecular Liquids, 2022, 345, 117714.	4.9	2
3	Molecular dynamics study on the use of Deep Eutectic Solvents for Enhanced Oil Recovery. Journal of Petroleum Science and Engineering, 2022, 209, 109953.	4.2	15
4	Land Vulnerability, Risk Zoning, and Ecological Protection in the Protection Forest of Pagaibamba (Peru). Forests, 2022, 13, 436.	2.1	2
5	Insights on novel type V deep eutectic solvents based on levulinic acid. Journal of Chemical Physics, 2022, 156, 094504.	3.0	11
6	Molecular dynamics of <scp>CH₄</scp> / <scp>CO₂</scp> on calcite for enhancing gas recovery. Canadian Journal of Chemical Engineering, 2022, 100, 3184-3195.	1.7	2
7	Bulk liquid phase and interfacial behavior of cineole – Based deep eutectic solvents with regard to carbon dioxide. Journal of Molecular Liquids, 2022, 353, 118748.	4.9	6
8	A theoretical study on CO ₂ at Li ₄ SiO ₄ and Li ₃ NaSiO ₄ surfaces. Physical Chemistry Chemical Physics, 2022, 24, 13678-13689.	2.8	5
9	A density functional theory based tight-binding study on the water effect on nanostructuring of choline chloride + ethylene glycol deep eutectic solvent. Journal of Chemical Physics, 2022, 156, .	3.0	6
10	High-pressure carbon dioxide solubility in terpene based deep eutectic solvents. Journal of Environmental Chemical Engineering, 2022, 10, 108237.	6.7	14
11	A nanoscopic explanation of nitric oxide solubility in natural deep eutectic solvents. Journal of Molecular Liquids, 2021, 324, 114673.	4.9	7
12	CO2 enhanced gas recovery and sequestration in depleted gas reservoirs: A review. Journal of Petroleum Science and Engineering, 2021, 196, 107685.	4.2	125
13	"Molecular insights into the production of few-layer graphene in N-CyclohexylpyrrolidoneÂ+ water mixtures― Carbon, 2021, 171, 723-738.	10.3	6
14	Effect of strain on gas adsorption in tight gas carbonates: A DFT study. Computational Materials Science, 2021, 188, 110186.	3.0	5
15	Theoretical studies of methane adsorption on Silica-Kaolinite interface for shale reservoir application. Applied Surface Science, 2021, 546, 149164.	6.1	23
16	Review and Perspectives for Effective Solutions to Grand Challenges of Energy and Fuels Technologies via Novel Deep Eutectic Solvents. Energy & Fuels, 2021, 35, 6402-6419.	5.1	46
17	Nanoscopic characterization of type II porous liquid and its use for CO2 absorption from molecular simulation. Journal of Molecular Liquids, 2021, 330, 115660.	4.9	15
18	Theoretical insights into the cineole-based deep eutectic solvents. Journal of Chemical Physics, 2021, 154, 184504.	3.0	14

#	Article	IF	CITATIONS
19	Additivation of MoS2 nanosheets to synthetic poly-alpha-olefins base oils: A theoretical study of nanolubrication. Journal of Molecular Liquids, 2021, 332, 115881.	4.9	9
20	Experimental and molecular modeling study on the binary mixtures of [EMIM][BF4] and [EMIM][TFSI] ionic liquids. Journal of Molecular Liquids, 2021, 334, 116049.	4.9	14
21	A combined experimental and theoretical study on diglymeÂ+Â1-alkanol liquid mixtures. Journal of Molecular Liquids, 2021, 334, 116048.	4.9	1
22	On the properties of N-methyl-2-pyrrolidonium hydrogen sulfate ionic liquid and alkanol mixtures. Journal of Molecular Liquids, 2021, 333, 115925.	4.9	2
23	The structure of CO2 and CH4 at the interface of a poly(urethane urea) oligomer model from the microscopic point of view. Journal of Chemical Physics, 2021, 155, 044704.	3.0	3
24	Low Toxicological Impact of Commercial Pristine Multi-Walled Carbon Nanotubes on the Yeast Saccharomyces cerevisiae. Nanomaterials, 2021, 11, 2272.	4.1	1
25	Molecular dynamics study on water confinement in deep eutectic solvents. Journal of Molecular Liquids, 2021, 339, 116758.	4.9	19
26	Ab-Initio Molecular Dynamics investigation of gas adsorption on α-quartz (001) for CO2 enhanced natural gas recovery. Journal of Petroleum Science and Engineering, 2021, 205, 108963.	4.2	2
27	Review on chemical enhanced oil recovery: Utilization of ionic liquids and deep eutectic solvents. Journal of Petroleum Science and Engineering, 2021, 205, 108746.	4.2	34
28	Influence of natural gas composition on adsorption in calcite Nanopores: A DFT study. Applied Surface Science, 2021, 568, 150940.	6.1	8
29	Insights on the water effect on deep eutectic solvents properties and structuring: The archetypical case of choline chlorideÂ+Âethylene glycol. Journal of Molecular Liquids, 2021, 344, 117717.	4.9	52
30	Nanoscopic study on carvone-terpene based natural deep eutectic solvents. Journal of Chemical Physics, 2021, 155, 224702.	3.0	11
31	Nanostructuring and macroscopic behavior of type V deep eutectic solvents based on monoterpenoids. Physical Chemistry Chemical Physics, 2021, 24, 512-531.	2.8	28
32	A theoretical study of gas adsorption on calcite for CO2 enhanced natural gas recovery. Applied Surface Science, 2020, 504, 144575.	6.1	28
33	Quasi-smectic liquid crystal phase of octane in contact with 2D MoS2. Applied Surface Science, 2020, 533, 147386.	6.1	5
34	Single atom transition metals on MoS2 monolayer and their use as catalysts for CO2 activation. Applied Surface Science, 2020, 534, 147611.	6.1	29
35	Insights into the interaction between lipid bilayers and trehalose aqueous solutions. Journal of Molecular Liquids, 2020, 314, 113639.	4.9	7
36	Behavior of Antibiotics in Natural Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2020, 65, 4669-4683.	1.9	9

#	Article	IF	CITATIONS
37	Ab Initio Molecular Dynamics Investigation of CH ₄ /CO ₂ Adsorption on Calcite: Improving the Enhanced Gas Recovery Process. ACS Omega, 2020, 5, 30226-30236.	3.5	6
38	Effect of Hydrogen Bond Donors and Acceptors on CO2 Absorption by Deep Eutectic Solvents. Processes, 2020, 8, 1533.	2.8	46
39	Long-Term Effects of the Application of Urban Waste Compost and Other Organic Amendments on Solanum tuberosum L Agronomy, 2020, 10, 1575.	3.0	7
40	Densification and tribofilm formation in hydrocarbon nanofluids induced by MoS2 nanotubes. Journal of Molecular Liquids, 2020, 311, 113291.	4.9	3
41	Insights on Betaine + Lactic Acid Deep Eutectic Solvent. Industrial & Engineering Chemistry Research, 2020, 59, 11880-11892.	3.7	21
42	Catalysis effect on CO ₂ methanation using MgH ₂ as a portable hydrogen medium. Physical Chemistry Chemical Physics, 2020, 22, 14720-14730.	2.8	7
43	Theoretical Study on Deep Eutectic Solvents as Vehicles for the Delivery of Anesthetics. Journal of Physical Chemistry B, 2020, 124, 1794-1805.	2.6	17
44	Ab Initio molecular dynamics of the dissolution of oilfield pyrite scale using borax. Journal of Molecular Liquids, 2020, 302, 112500.	4.9	15
45	Intermolecular forces in pyrrolidones + 1,2-alkanediol liquid mixtures. Journal of Molecular Liquids, 2020, 302, 112539.	4.9	2
46	Deep Eutectic Solvent Reline at 2D Nanomaterial Interfaces. Journal of Physical Chemistry B, 2020, 124, 1197-1206.	2.6	22
47	Effect of surface morphology on methane interaction with calcite: a DFT study. RSC Advances, 2020, 10, 16669-16674.	3.6	17
48	A theoretical study of gas adsorption on α-quartz (0Â0Â1) for CO2 enhanced natural gas recovery. Applied Surface Science, 2020, 525, 146472.	6.1	10
49	Insights on (C, BN, Si, Ge, MoS ₂) Nanotubes in Reline Deep Eutectic Solvent. Journal of Physical Chemistry B, 2020, 124, 3556-3567.	2.6	11
50	A Theoretical Study on Trehalose + Water Mixtures for Dry Preservation Purposes. Molecules, 2020, 25, 1435.	3.8	5
51	Quantum Chemistry Insight into the Interactions Between Deep Eutectic Solvents and SO2. Molecules, 2019, 24, 2963.	3.8	36
52	An experimental study on doubly salt effect for methane hydrate inhibition. Journal of Natural Gas Science and Engineering, 2019, 72, 103015.	4.4	13
53	Effect of rock mineralogy on Hot-CO2 injection for enhanced gas recovery. Journal of Natural Gas Science and Engineering, 2019, 72, 103030.	4.4	19
54	Insights on [BMIM][BF4] and [BMIM][PF6] ionic liquids and their binary mixtures with acetone and acetonitrile. Journal of Molecular Liquids, 2019, 294, 111632.	4.9	13

#	Article	IF	CITATIONS
55	Theoretical Insights into CO ₂ Adsorption by MoS ₂ Nanomaterials. Journal of Physical Chemistry C, 2019, 123, 26338-26350.	3.1	18
56	An experimental and theoretical investigation of the physicochemical properties on choline chloride – Lactic acid based natural deep eutectic solvent (NADES). Journal of Molecular Liquids, 2019, 290, 110916.	4.9	57
57	Design of arginine-based therapeutic deep eutectic solvents as drug solubilization vehicles for active pharmaceutical ingredients. Physical Chemistry Chemical Physics, 2019, 21, 10621-10634.	2.8	54
58	Combined Experimental and Theoretical Study on High Pressure Methane Solubility in Natural Deep Eutectic Solvents. Industrial & Engineering Chemistry Research, 2019, 58, 8097-8111.	3.7	34
59	Molecular dynamics simulations of mixed deep eutectic solvents and their interaction with nanomaterials. Journal of Molecular Liquids, 2019, 283, 147-154.	4.9	43
60	Insights into Carbon Nanotubes and Fullerenes in Molten Alkali Carbonates. Journal of Physical Chemistry C, 2019, 123, 9909-9918.	3.1	3
61	Experimental and theoretical study of 2-hydroxyethylammonium formate ionic liquid + alcohol mixtures. Journal of Molecular Liquids, 2019, 281, 269-279.	4.9	13
62	A theoretical study on the adsorption of acid gases by boron nitride-based nanomaterials. Applied Surface Science, 2019, 480, 83-95.	6.1	13
63	A combined experimental and theoretical study on gas adsorption performance of amine and amide porous polymers. Microporous and Mesoporous Materials, 2019, 279, 61-72.	4.4	15
64	Intermolecular forces in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide + ethanol mixtures. Journal of Molecular Liquids, 2018, 258, 1-9.	4.9	19
65	Gas solubility and rheological behavior study of betaine and alanine based natural deep eutectic solvents (NADES). Journal of Molecular Liquids, 2018, 256, 286-295.	4.9	76
66	Insights on the mixtures of imidazolium based ionic liquids with molecular solvents. Journal of Molecular Liquids, 2018, 255, 199-207.	4.9	30
67	Molecular Modeling Analysis of CO ₂ Absorption by Glymes. Journal of Physical Chemistry B, 2018, 122, 1948-1957.	2.6	4
68	Theoretical Study of Low Viscous Ionic Liquids at the Graphene Interface. Journal of Physical Chemistry C, 2018, 122, 1645-1656.	3.1	15
69	A theoretical study on mixtures of amino acid-based ionic liquids. Physical Chemistry Chemical Physics, 2018, 20, 10213-10223.	2.8	11
70	Microscopic characterization of mixtures of amino acid ionic liquids and organic solvents. Journal of Molecular Liquids, 2018, 250, 111-120.	4.9	8
71	Adsorption equilibrium studies of CO2, CH4 and N2 on various modified zeolites at high pressures up to 200 bars. Microporous and Mesoporous Materials, 2018, 262, 49-58.	4.4	35
72	A nanoscopic approach on benzene-toluene-xylenes extraction by sulfolane. Journal of Molecular Liquids, 2018, 249, 1039-1046.	4.9	8

#	Article	IF	CITATIONS
73	Structural Elucidation of Covalent Organic Polymers (COP) and Their Linker Effect on Gas Adsorption Performance via Density Functional Theory Approach. ChemistrySelect, 2018, 3, 8294-8305.	1.5	6
74	A theoretical study on lidocaine solubility in deep eutectic solvents. Physical Chemistry Chemical Physics, 2018, 20, 27464-27473.	2.8	54
75	Theoretical Study on Molten Alkali Carbonate Interfaces. Langmuir, 2018, 34, 13065-13076.	3.5	5
76	On the properties of (choline chloride + lactic acid) deep eutectic solvent with methanol mixtures. Journal of Molecular Liquids, 2018, 272, 815-820.	4.9	49
77	Molecular Dynamics Simulations of Metal Nanoparticles in Deep Eutectic Solvents. Journal of Physical Chemistry C, 2018, 122, 18029-18039.	3.1	19
78	Molecular dynamics and experimental characterization of [BMIM][BF4] and [BMIM][PF6] with ether cosolvent binary mixtures. Journal of Molecular Liquids, 2018, 271, 65-73.	4.9	8
79	Cost-effective alkylammonium formate-based protic ionic liquids for methane hydrate inhibition. Journal of Natural Gas Science and Engineering, 2018, 58, 59-68.	4.4	23
80	Theoretical Study of Oil Desulfuration by Ammonium-Based Deep Eutectic Solvents. Energy & Fuels, 2018, 32, 7497-7507.	5.1	20
81	Molecular Insights into Benzimidazole‣inked Polymer Interactions with Carbon Dioxide and Nitrogen. ChemistrySelect, 2018, 3, 3691-3701.	1.5	10
82	Simultaneous CO ₂ and SO ₂ capture by using ionic liquids: a theoretical approach. Physical Chemistry Chemical Physics, 2017, 19, 5411-5422.	2.8	18
83	Rheological, Thermodynamic, and Gas Solubility Properties of Phenylacetic Acidâ€Based Deep Eutectic Solvents. Chemical Engineering and Technology, 2017, 40, 778-790.	1.5	35
84	Elucidating the Properties of Graphene–Deep Eutectic Solvents Interface. Langmuir, 2017, 33, 5154-5165.	3.5	42
85	Insights into Glycol Ether–Alkanol Mixtures from a Combined Experimental and Theoretical Approach. Journal of Physical Chemistry B, 2017, 121, 5601-5612.	2.6	6
86	Investigation of the performance of biocompatible gas hydrate inhibitors via combined experimental and DFT methods. Journal of Chemical Thermodynamics, 2017, 111, 7-19.	2.0	20
87	Microscopic characterization of amino acid ionic liquids - water mixtures. Journal of Molecular Liquids, 2017, 236, 81-92.	4.9	10
88	Local environment structure and dynamics of CO2 in the 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide and related ionic liquids. Journal of Chemical Physics, 2017, 146, 104502.	3.0	8
89	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar. Journal of Chemical & Engineering Data, 2017, 62, 1310-1317.	1.9	25
90	High-pressure gas hydrate autoclave hydraulic experiments and scale-up modeling on the effect of stirring RPM effect. Journal of Natural Gas Science and Engineering, 2017, 38, 50-58.	4.4	46

#	Article	IF	CITATIONS
91	Behavior of Deep Eutectic Solvents under External Electric Fields: A Molecular Dynamics Approach. Journal of Physical Chemistry B, 2017, 121, 221-232.	2.6	21
92	On the behaviour of aqueous solutions of deep eutectic solvents at lipid biomembranes. Journal of Molecular Liquids, 2017, 247, 116-125.	4.9	22
93	Gas Solubility and Rheological Behavior of Natural Deep Eutectic Solvents (NADES) via Combined Experimental and Molecular Simulation Techniques. ChemistrySelect, 2017, 2, 7278-7295.	1.5	49
94	Gas hydrates inhibition via combined biomolecules and synergistic materials at wide process conditions. Journal of Natural Gas Science and Engineering, 2017, 46, 873-883.	4.4	53
95	Microscopic Characterization of CO ₂ and H ₂ S Removal by Sulfolane. Energy & amp; Fuels, 2017, 31, 9800-9813.	5.1	8
96	A theoretical study on aminoacid-based ionic liquids with acid gases and water. Journal of Molecular Liquids, 2017, 225, 347-356.	4.9	10
97	High performance CO ₂ filtration and sequestration by using bromomethyl benzene linked microporous networks. RSC Advances, 2016, 6, 66324-66335.	3.6	6
98	Properties of Dialkylcarbonate + 1-Alkanol Mixtures at the Vacuum Interface. Journal of Physical Chemistry C, 2016, 120, 29126-29134.	3.1	3
99	Insights on 1-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide + Ethanol Liquid Mixtures: A Molecular Dynamics Approach. Journal of Chemical & Engineering Data, 2016, 61, 2729-2737.	1.9	14
100	High-Pressure Methane, Carbon Dioxide, and Nitrogen Adsorption on Amine-Impregnated Porous Montmorillonite Nanoclays. Journal of Chemical & Engineering Data, 2016, 61, 2749-2760.	1.9	38
101	Physicochemical Insights on Alkylcarbonate–Alkanol Solutions. Journal of Physical Chemistry B, 2016, 120, 5015-5028.	2.6	12
102	Investigation of Ester- and Amide-Linker-Based Porous Organic Polymers for Carbon Dioxide Capture and Separation at Wide Temperatures and Pressures. ACS Applied Materials & Interfaces, 2016, 8, 20772-20785.	8.0	52
103	Double Salt Ionic Liquids Based on Ammonium Cations and Their Application for CO ₂ Capture. Journal of Physical Chemistry C, 2016, 120, 17829-17844.	3.1	28
104	Insights into choline chloride–phenylacetic acid deep eutectic solvent for CO ₂ absorption. RSC Advances, 2016, 6, 109201-109210.	3.6	31
105	Interfacial properties of 1-ethyl-3-methylimidazolium glycinate ionic liquid regarding CO2, SO2 and water from molecular dynamics. Journal of Molecular Liquids, 2016, 220, 910-917.	4.9	8
106	Deep Eutectic Solvents on the Surface of Face Centered Cubic Metals. Journal of Physical Chemistry C, 2016, 120, 10400-10409.	3.1	29
107	Flavonol–carbon nanostructure hybrid systems: a DFT study on the interaction mechanism and UV/Vis features. Physical Chemistry Chemical Physics, 2016, 18, 4760-4771.	2.8	7
108	A molecular dynamics study on aminoacid-based ionic liquids. Journal of Molecular Liquids, 2016, 213, 201-212.	4.9	33

#	Article	IF	CITATIONS
109	Experimental and DFT Approach on the Determination of Natural Gas Hydrate Equilibrium with the Use of Excess N ₂ and Choline Chloride Ionic Liquid as an Inhibitor. Energy & Fuels, 2016, 30, 2821-2832.	5.1	36
110	Synthesis, characterization and evaluation of porous polybenzimidazole materials for CO2 adsorption at high pressures. Adsorption, 2016, 22, 247-260.	3.0	15
111	Gas Hydrate Prevention and Flow Assurance by Using Mixtures of Ionic Liquids and Synergent Compounds: Combined Kinetics and Thermodynamic Approach. Energy & Fuels, 2016, 30, 3541-3548.	5.1	59
112	In silico rational design of ionic liquids for the exfoliation and dispersion of boron nitride nanosheets. Physical Chemistry Chemical Physics, 2016, 18, 1212-1224.	2.8	20
113	A theoretical study on mitigation of CO2 through advanced deep eutectic solvents. International Journal of Greenhouse Gas Control, 2015, 39, 62-73.	4.6	55
114	Adsorption of choline benzoate ionic liquid on graphene, silicene, germanene and boron-nitride nanosheets: a DFT perspective. Physical Chemistry Chemical Physics, 2015, 17, 16315-16326.	2.8	39
115	Interfacial Properties of Double Salt Ionic Liquids: A Molecular Dynamics Study. Journal of Physical Chemistry C, 2015, 119, 28405-28416.	3.1	25
116	Thermodynamic characterization of deepwater natural gas mixtures with heavy hydrocarbon content at high pressures. Journal of Chemical Thermodynamics, 2015, 82, 134-142.	2.0	8
117	A detailed study of cholinium chloride and levulinic acid deep eutectic solvent system for CO ₂ capture via experimental and molecular simulation approaches. Physical Chemistry Chemical Physics, 2015, 17, 20941-20960.	2.8	133
118	Theoretical Study on the Solvation of C ₆₀ Fullerene by Ionic Liquids II: DFT Analysis of the Interaction Mechanism. Journal of Physical Chemistry B, 2015, 119, 10616-10629.	2.6	9
119	An approach for the rationalization of melting temperature for deep eutectic solvents from DFT. Chemical Physics Letters, 2015, 634, 151-155.	2.6	111
120	Water Effect on Acid-Gas Capture Using Choline Lactate: A DFT Insight beyond Molecule–Molecule Pair Simulations. Journal of Physical Chemistry B, 2015, 119, 5546-5557.	2.6	14
121	A density functional theory insight towards the rational design of ionic liquids for SO ₂ capture. Physical Chemistry Chemical Physics, 2015, 17, 13559-13574.	2.8	37
122	Flavonols on graphene: a DFT insight. Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	7
123	Deep Eutectic Solvents: Physicochemical Properties and Gas Separation Applications. Energy & Fuels, 2015, 29, 2616-2644.	5.1	777
124	Density Functional Theory Study on the Cholinium Dihydrogenphosphate Ionic Liquid for Acid Gas Removal. Journal of Solution Chemistry, 2015, 44, 890-899.	1.2	3
125	Characterization of Amide–Alkanediol Intermolecular Interactions. Journal of Physical Chemistry B, 2015, 119, 4725-4738.	2.6	13
126	Insights of CO2 adsorption performance of amine impregnated mesoporous silica (SBA-15) at wide range pressure and temperature conditions. International Journal of Greenhouse Gas Control, 2015, 43, 22-32.	4.6	44

#	Article	IF	CITATIONS
127	Nanowetting of Graphene by Ionic Liquid Droplets. Journal of Physical Chemistry C, 2015, 119, 24529-24537.	3.1	38
128	The impact of charges in force field parameterization for molecular dynamics simulations of deep eutectic solvents. Journal of Molecular Liquids, 2015, 211, 506-514.	4.9	69
129	Systematic Study on the Viscosity of Ionic Liquids: Measurement and Prediction. Industrial & Engineering Chemistry Research, 2015, 54, 10918-10924.	3.7	69
130	Theoretical Study of Renewable Ionic Liquids in the Pure State and with Graphene and Carbon Nanotubes. Journal of Physical Chemistry B, 2015, 119, 12224-12237.	2.6	15
131	Assessment of DFT methods for studying acid gas capture by ionic liquids. Physical Chemistry Chemical Physics, 2015, 17, 26875-26891.	2.8	27
132	Interaction Mechanism Insights on the Solvation of Fullerene B ₈₀ with Choline-based Ionic Liquids. Journal of Physical Chemistry B, 2015, 119, 12455-12463.	2.6	3
133	Interfacial Properties of Deep Eutectic Solvents Regarding to CO ₂ Capture. Journal of Physical Chemistry C, 2015, 119, 21413-21425.	3.1	81
134	Theoretical Study of Amino Acid-Based Ionic Liquids Interacting with Carbon Nanosystems. Journal of Physical Chemistry C, 2015, 119, 27080-27094.	3.1	21
135	Insights from quantum chemistry into piperazine-based ionic liquids and their behavior with regard to CO2. Journal of Molecular Modeling, 2014, 20, 2107.	1.8	16
136	Theoretical Study on Amino Acid-Based Ionic Pairs and Their Interaction with Carbon Nanostructures. Journal of Physical Chemistry C, 2014, 118, 9741-9757.	3.1	34
137	Structure of Alkylcarbonate + <i>n</i> -Alkane Mixed Fluids. Journal of Physical Chemistry B, 2014, 118, 11310-11322.	2.6	11
138	Gas Hydrate Inhibition: A Review of the Role of Ionic Liquids. Industrial & Engineering Chemistry Research, 2014, 53, 17855-17868.	3.7	171
139	A theoretical study on ionic liquid endohedral C540 fullerene. RSC Advances, 2014, 4, 45286-45299.	3.6	3
140	Folding of Graphene Nanostructures Driven by Ionic Liquids Nanodroplets. Journal of Physical Chemistry C, 2014, 118, 21081-21091.	3.1	13
141	Insights into alkyl lactate+water mixed fluids. Journal of Molecular Liquids, 2014, 199, 215-223.	4.9	14
142	Theoretical Study on the Solvation of C60 Fullerene by Ionic Liquids. Journal of Physical Chemistry B, 2014, 118, 11330-11340.	2.6	25
143	Viscous origin of ionic liquids at the molecular level: A quantum chemical insight. Chemical Physics Letters, 2014, 610-611, 267-272.	2.6	7
144	A quantum chemistry study of natural gas hydrates. Journal of Molecular Modeling, 2014, 20, 2182.	1.8	18

9

#	Article	IF	CITATIONS
145	On the Properties of CO ₂ and Flue Gas at the Piperazinium-Based Ionic Liquids Interface: A Molecular Dynamics Study. Journal of Physical Chemistry C, 2013, 117, 15061-15074.	3.1	22
146	Limitations and high pressure behavior of MOF-5 for CO2 capture. Physical Chemistry Chemical Physics, 2013, 15, 14319.	2.8	42
147	Insights on cholinium- and piperazinium-based ionic liquids under external electric fields: A molecular dynamics study. Journal of Chemical Physics, 2013, 139, 224502.	3.0	12
148	Molecular Dynamics Study of Carbon Nanostructures in <i>N</i> -Methylpiperazinium Lactate Ionic Liquid. Journal of Physical Chemistry C, 2013, 117, 22046-22059.	3.1	21
149	Viscous Behavior of Imidazolium-Based Ionic Liquids. Industrial & Engineering Chemistry Research, 2013, 52, 16774-16785.	3.7	64
150	High pressure CO2 absorption studies on imidazolium-based ionic liquids: Experimental and simulation approaches. Fluid Phase Equilibria, 2013, 351, 74-86.	2.5	56
151	PiT measurements and derived properties of liquid 1,2-alkanediols. Journal of Chemical Thermodynamics, 2013, 57, 137-144.	2.0	29
152	A combined computational and experimental study of high pressure and supercritical CO2 adsorption on Basolite MOFs. Microporous and Mesoporous Materials, 2013, 175, 34-42.	4.4	45
153	Nanoscopic Vision on Fuel Dearomatization Using Ionic Liquids: The Case of Piperazine-Based Fluids. Energy & Fuels, 2013, 27, 2515-2527.	5.1	22
154	Densities and Viscosities of Three Binary Monoglyme + 1-Alcohol Systems from (283.15 to 313.15) K. Journal of Chemical & Engineering Data, 2013, 58, 909-914.	1.9	35
155	Mixed Ionic Liquids: The Case of Pyridinium-Based Fluids. Journal of Physical Chemistry B, 2012, 116, 2526-2537.	2.6	48
156	Choline-Based Ionic Liquids on Graphite Surfaces and Carbon Nanotubes Solvation: A Molecular Dynamics Study. Journal of Physical Chemistry C, 2012, 116, 12055-12065.	3.1	50
157	A Computational Study on Choline Benzoate and Choline Salicylate Ionic Liquids in the Pure State and After CO ₂ Adsorption. Journal of Physical Chemistry B, 2012, 116, 9171-9185.	2.6	55
158	Review on Natural Gas Thermopysical Property Measurement Techniques. , 2012, , .		1
159	Optimized Binary Interaction Parameters for VLE Calculations of Natural Gas Mixtures via Cubic and Molecular-Based Equations of State. Industrial & Engineering Chemistry Research, 2012, 51, 9687-9699.	3.7	9
160	Insights into Trisâ€(2â€Hydroxylethyl)methylammonium Methylsulfate Aqueous Solutions. ChemPhysChem, 2012, 13, 3340-3349.	2.1	5
161	Water effect on CO2 absorption for hydroxylammonium based ionic liquids: A molecular dynamics study. Chemical Physics, 2012, 400, 118-125.	1.9	30
162	PÏ√ measurements and derived properties of liquid 1-alkanols. Journal of Chemical Thermodynamics, 2012, 47, 241-259.	2.0	49

#	Article	IF	CITATIONS
163	Isothermal PïT measurements on Qatar's North Field type synthetic natural gas mixtures using a vibrating-tube densimeter. Journal of Chemical Thermodynamics, 2012, 53, 1-8.	2.0	18
164	Study on Hydroxylammonium-Based Ionic Liquids. I. Characterization. Journal of Physical Chemistry B, 2011, 115, 12473-12486.	2.6	45
165	Study on Hydroxylammonium-Based Ionic Liquids. II. Computational Analysis of CO ₂ Absorption. Journal of Physical Chemistry B, 2011, 115, 12487-12498.	2.6	36
166	CO ₂ Adsorption Studies on Hydroxy Metal Carbonates M(CO ₃) _{<i>x</i>} (OH) _{<i>y</i>} (M = Zn, Zn–Mg, Mg, Mg–Cu, Cu, Ni,)	Tj BTSQqO	0 04ægBT /Ove
167	On the Viscosity of Pyridinium Based Ionic Liquids: An Experimental and Computational Study. Journal of Physical Chemistry B, 2011, 115, 12499-12513.	2.6	67
168	p–Ï–TBehavior of Three Lean Synthetic Natural Gas Mixtures Using a Magnetic Suspension Densimeter and Isochoric Apparatus from (250 to 450) K with Pressures up to 150 MPa: Part II. Journal of Chemical & Engineering Data, 2011, 56, 3766-3774.	1.9	19
169	Study of Dimethoxyethane/Ethanol Solutions. Journal of Physical Chemistry B, 2011, 115, 8864-8874.	2.6	23
170	Compressed liquid density measurements for {methylbenzoate+(cyclohexane or 1-hexanol)} binary systems. Journal of Chemical Thermodynamics, 2011, 43, 1017-1022.	2.0	8
171	On the Structure of Liquid Methyl Salicylate: the Role of Intramolecular Hydrogen Bonding. European Journal of Chemistry, 2010, 1, 162-167.	0.6	7
172	Experimental and Computational Study on the Properties of Pure and Water Mixed 1-Ethyl-3-methylimidazolium l-(+)-Lactate Ionic Liquid. Journal of Physical Chemistry B, 2010, 114, 5795-5809.	2.6	29
173	Review on the Use of Ionic Liquids (ILs) as Alternative Fluids for CO ₂ Capture and Natural Gas Sweetening. Energy & Fuels, 2010, 24, 5817-5828.	5.1	452
174	Viscosity Measurements and Data Correlation for Two Synthetic Natural Gas Mixtures. Journal of Chemical & Engineering Data, 2010, 55, 2498-2504.	1.9	31
175	Thermophysical Properties of Pure Ionic Liquids: Review of Present Situation. Industrial & Engineering Chemistry Research, 2010, 49, 9580-9595.	3.7	395
176	A Systematic Computational Study on Flavonoids. International Journal of Molecular Sciences, 2010, 11, 2017-2038.	4.1	64
177	On the Viscosity of Natural Gases from Qatari North Field Reservoir. Journal of Chemical & Engineering Data, 2010, 55, 5117-5123.	1.9	19
178	Computational Study of Hexamethylguanidinium Lactate Ionic Liquid: A Candidate for Natural Gas Sweetening. Energy & Fuels, 2010, 24, 4989-5001.	5.1	44
179	Pyrrolidone Derivatives in Water Solution: An Experimental and Theoretical Perspective. Industrial & Engineering Chemistry Research, 2009, 48, 1036-1050.	3.7	33
180	Insights into the Coal Extractive Solvent <i>N</i> -Methyl-2-pyrrolidone + Carbon Disulfide. Energy & Fuels, 2009, 23, 1591-1602.	5.1	15

#	Article	IF	CITATIONS
181	Thermophysical Properties of Binary and Ternary Mixtures Containing Lactams and Methanol. Industrial & Engineering Chemistry Research, 2009, 48, 10065-10076.	3.7	27
182	Characterization of two lactones in liquid phase: an experimental and computational approach. Physical Chemistry Chemical Physics, 2009, 11, 6455.	2.8	44
183	Insights into the Ethyl Lactate + Water Mixed Solvent. Journal of Physical Chemistry B, 2009, 113, 14257-14269.	2.6	42
184	High-Pressure Study of the Methylsulfate and Tosylate Imidazolium Ionic Liquids. Journal of Physical Chemistry B, 2009, 113, 5593-5606.	2.6	52
185	The green solventethyl lactate: an experimental and theoretical characterization. Green Chemistry, 2009, 11, 65-78.	9.0	189
186	Microwave dielectric spectroscopy of pure and mixed aromatic ester solvents. PMC Physics B, 2008, 1, .	0.9	9
187	Liquid structure of ethyl lactate, pure and water mixed, as seen by dielectric spectroscopy, solvatochromic and thermophysical studies. Chemical Physics Letters, 2008, 454, 49-55.	2.6	55
188	Liquid–liquid equilibria of lactam containing binary systems. Fluid Phase Equilibria, 2008, 266, 90-100.	2.5	15
189	On the Properties of Methylbenzoate/ <i>n</i> -Hexane Mixed Solvents:  A Theoretical and Experimental Study. Journal of Physical Chemistry B, 2008, 112, 5047-5057.	2.6	3
190	Measurements and Predictive Models for the <i>N</i> -Methyl-2-pyrrolidone/Water/Methanol System. Journal of Physical Chemistry B, 2008, 112, 11361-11373.	2.6	40
191	Properties of 1,8-Cineole:  A Thermophysical and Theoretical Study. Journal of Physical Chemistry B, 2007, 111, 3167-3177.	2.6	43
192	Properties and Structure of Aromatic Ester Solvents. Journal of Physical Chemistry B, 2007, 111, 4417-4431.	2.6	12
193	On the properties of 1-butyl-3-methylimidazolium octylsulfate ionic liquid. Green Chemistry, 2007, 9, 221-232.	9.0	130
194	Computational Study on the Properties and Structure of Methyl Lactate. Journal of Physical Chemistry A, 2007, 111, 4671-4683.	2.5	24
195	Microwave dielectric spectroscopy of 2-pyrrolidone+water mixtures. Chemical Physics Letters, 2007, 444, 252-257.	2.6	18
196	PVTxMeasurements of theN-Methylpyrrolidone/Methanol Mixed Solvent:Â Cubic and SAFT EOS Analyses. Journal of Physical Chemistry B, 2006, 110, 6933-6942.	2.6	16
197	Solute–solvent interactions in lactams–water ternary solvents. New Journal of Chemistry, 2005, 29, 817.	2.8	18
198	Thermophysical Behavior of n-Alkane + Alkylbenzoate Mixed Solvents. Measurements and Properties Modeling. Industrial & Engineering Chemistry Research, 2005, 44, 7575-7583.	3.7	56

#	Article	IF	CITATIONS
199	Structures of Alkyl Benzoate Binary Mixtures. A Kirkwoodâ^'Buff Fluctuation Theory Study Using UNIFAC. Journal of Physical Chemistry B, 2005, 109, 19908-19914.	2.6	12
200	Measurements and Modeling of Thermophysical Behavior of (C1â^' C4) Alkylbenzoate/ (C1â^' C11) Alkan-1-ol Mixed Solvents. Journal of Physical Chemistry B, 2004, 108, 15841-15850.	2.6	152
201	Characterization of Lactam-Containing Binary Solvents by Solvatochromic Indicators. Journal of Physical Chemistry B, 2004, 108, 3024-3029.	2.6	55
202	Modeling the PVTx Behavior of the N-Methylpyrrolidinone/Water Mixed Solvent. Industrial & Engineering Chemistry Research, 2004, 43, 3205-3215.	3.7	34
203	Thermophysical Behavior and Temperature Effect on the N-Methylpyrrolidone + (C1â^'C10) Alkan-1-ols Mixed Solvents. Industrial & Engineering Chemistry Research, 2003, 42, 920-928.	3.7	15
204	Preferential Solvation in Ternary Solutions Containing Methylbenzoate. A Kirkwoodâ^'Buff Fluctuation Theory Study. Journal of Physical Chemistry B, 2003, 107, 13478-13486.	2.6	19
205	Volumetric properties, viscosities and refractive indices of binary mixed solvents containing methyl benzoate. Physical Chemistry Chemical Physics, 2002, 4, 5833-5840.	2.8	42
206	Thermophysical Behavior of Methylbenzoate + n-Alkanes Mixed Solvents. Application of Cubic Equations of State and Viscosity Models. Industrial & Engineering Chemistry Research, 2002, 41, 4399-4408.	3.7	66
207	The N-methylpyrrolidone–(C1–C10) alkan-1-ols solvent systemsElectronic Supplementary Information (ESI) available: Properties of pure components, densities, viscosities and refractive indices of mixtures NMP(1) + alkan-1-ols(2) at 298.15 K (Tables S1–S4). See http://www.rsc.org/suppdata/cp/b1/b109709 Physical Chemistry Chemical Physics. 2002. 4. 1170-1177.	c ? .8	78
208	Solute–solvent interactions in the (N,N-dimethylformamide + N-methylformamide + water) ternary system at 298.15 K. Physical Chemistry Chemical Physics, 2001, 3, 2866-2871.	2.8	27
209	Natural Gas Hydrates. , 0, , .		14