Ralph Welsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2392326/publications.pdf Version: 2024-02-01

PAIDH WEISCH

#	Article	IF	CITATIONS
1	Observation of the fastest chemical processes in the radiolysis of water. Science, 2020, 367, 179-182.	6.0	149
2	Communication: Ro-vibrational control of chemical reactivity in H+CH4→ H2+CH3 : Full-dimensional quantum dynamics calculations and a sudden model. Journal of Chemical Physics, 2014, 141, 051102.	1.2	84
3	Loss of Memory in H + CH ₄ → H ₂ + CH ₃ State-to-State Reactive Scattering. Journal of Physical Chemistry Letters, 2015, 6, 338-342.	2.1	82
4	Coherent two-dimensional terahertz-terahertz-Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6857-6861.	3.3	80
5	Reaction dynamics with the multi-layer multi-configurational time-dependent Hartree approach: H + CH4 → H2 + CH3 rate constants for different potentials. Journal of Chemical Physics, 2012, 137, 244106.	1.2	68
6	Full-dimensional and reduced-dimensional calculations of initial state-selected reaction probabilities studying the H + CH4 → H2 + CH3 reaction on a neural network PES. Journal of Chemical Physics, 2015, 142, 064309.	1.2	68
7	Molecular polarizability anisotropy of liquid water revealed by terahertz-induced transient orientation. Nature Communications, 2018, 9, 2142.	5.8	63
8	State-to-state reaction probabilities within the quantum transition state framework. Journal of Chemical Physics, 2012, 136, 064117.	1.2	58
9	The role of the transition state in polyatomic reactions: Initial state-selected reaction probabilities of the H + CH4 → H2 + CH3 reaction. Journal of Chemical Physics, 2014, 141, 174313.	1.2	58
10	Fast Shepard interpolation on graphics processing units: Potential energy surfaces and dynamics for H + CH4 → H2 + CH3. Journal of Chemical Physics, 2013, 138, 164118.	1.2	50
11	Control of Nuclear Dynamics through Conical Intersections and Electronic Coherences. Physical Review Letters, 2018, 120, 123001.	2.9	49
12	Non-equilibrium dynamics from RPMD and CMD. Journal of Chemical Physics, 2016, 145, 204118.	1.2	48
13	Thermal flux based analysis of state-to-state reaction probabilities. Molecular Physics, 2012, 110, 703-715.	0.8	39
14	2D THz-THz-Raman Photon-Echo Spectroscopy of Molecular Vibrations in Liquid Bromoform. Journal of Physical Chemistry Letters, 2017, 8, 4640-4644.	2.1	39
15	Correlation functions for fully or partially state-resolved reactive scattering calculations. Journal of Chemical Physics, 2014, 140, 244113.	1.2	37
16	Molecular Seesaw: How Increased Hydrogen Bonding Can Hinder Excited-State Proton Transfer. Journal of Physical Chemistry Letters, 2016, 7, 3616-3620.	2.1	14
17	Prospects of Using High-Intensity THz Pulses To Induce Ultrafast Temperature-Jumps in Liquid Water. Journal of Physical Chemistry A, 2018, 122, 5211-5222.	1.1	14
18	Hole dynamics in a photovoltaic donor-acceptor couple revealed by simulated time-resolved X-ray absorption spectroscopy. Structural Dynamics, 2019, 6, 044102.	0.9	13

RALPH WELSCH

#	Article	IF	CITATIONS
19	Molecular electronic decoherence following attosecond photoionisation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 164006.	0.6	13
20	Nuclear quantum effects in state-selective scattering from ring polymer molecular dynamics. Journal of Chemical Physics, 2020, 152, 194113.	1.2	12
21	Rigorous close-coupling quantum dynamics calculation of thermal rate constants for the water formation reaction of H2 + OH on a high-level PES. Journal of Chemical Physics, 2018, 148, 204304.	1.2	11
22	Challenges in XUV Photochemistry Simulations: A Case Study on Ultrafast Fragmentation Dynamics of the Benzene Radical Cation. Journal of Physical Chemistry A, 2018, 122, 1004-1010.	1.1	10
23	Calculations of quantum tunnelling rates for muonium reactions with methane, ethane and propane. Physical Chemistry Chemical Physics, 2020, 22, 16843-16854.	1.3	10
24	Infrared-laser-pulse-enhanced ultrafast fragmentation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:msub> <mml:mi mathvariant="normal">N <mml:mn>2</mml:mn> </mml:mi </mml:msub> </mml:mrow> <mml:mrow> <mml:mn> following Auger decay: Mixed quantum-classical simulations. Physical Review A, 2018, 98, .</mml:mn></mml:mrow></mml:msup></mml:math 	2 <td>n>?mml:mo></td>	n>?mml:mo>
25	Stateâ€selective cross sections from ring polymer molecular dynamics. International Journal of Quantum Chemistry, 2021, 121, e26447.	1.0	7
26	Probing photodissociation dynamics using ring polymer molecular dynamics. Journal of Chemical Physics, 2019, 150, 114105.	1.2	6
27	Initial state-selected scattering for the reactions H + CH4/CHD3 and F + CHD3 employing ring polymer molecular dynamics. Journal of Chemical Physics, 2022, 156, 044101.	1.2	6
28	Lowâ€Temperature Thermal Rate Constants for the Water Formation Reaction H ₂ +OH from Rigorous Quantum Dynamics Calculations. Angewandte Chemie - International Edition, 2018, 57, 13150-13153.	7.2	5
29	Time-resolving the UV-initiated photodissociation dynamics of OCS. Faraday Discussions, 2021, 228, 413-431.	1.6	5
30	Kinetic isotope effects in the water forming reaction H2/D2 + OH from rigorous close-coupling quantum dynamics simulations. Physical Chemistry Chemical Physics, 2019, 21, 17054-17062.	1.3	3
31	Choice of the electronic basis for field-induced surface hopping. Physical Review A, 2020, 102, .	1.0	3
32	Ultrafast time-resolved x-ray absorption spectroscopy of ionized urea and its dimer through <i>ab initio</i> nonadiabatic dynamics. Structural Dynamics, 2021, 8, 034102.	0.9	3
33	Fundamentals: general discussion. Faraday Discussions, 2016, 195, 139-169.	1.6	2
34	Lowâ€Temperature Thermal Rate Constants for the Water Formation Reaction H ₂ +OH from Rigorous Quantum Dynamics Calculations. Angewandte Chemie, 2018, 130, 13334-13337.	1.6	2
35	Simulated XUV photoelectron spectra of THz-pumped liquid water. Journal of Chemical Physics, 2019, 150, 044505.	1.2	2
36	Field-enabled quantum interference in atomic Auger decay. Physical Review A, 2020, 102, .	1.0	0