Shayanti Mukherjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2391969/publications.pdf

Version: 2024-02-01

46 2,804 26 46 papers citations h-index g-index

49 49 49 4730 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Vaginal pressure sensor measurement during maximal voluntary pelvic floor contraction correlates with vaginal birth and pelvic organ prolapse—A pilot study. Neurourology and Urodynamics, 2022, 41, 592-600.	1.5	3
2	Improved osteoblast function on titanium implant surfaces coated with nanocomposite Apatite–Wollastonite–Chitosan– an experimental in-vitro study. Journal of Materials Science: Materials in Medicine, 2022, 33, 25.	3.6	7
3	Incorporation of inorganic bioceramics into electrospun scaffolds for tissue engineering applications: A review. Ceramics International, 2022, 48, 8803-8837.	4.8	42
4	Vaginal delivery of tissue engineered endometrial mesenchymal stem/stromal cells in an aloe vera-alginate hydrogel alleviates maternal simulated birth injury. Applied Materials Today, 2021, 22, 100890.	4.3	10
5	Immunobiology and Application of Aloe vera-Based Scaffolds in Tissue Engineering. International Journal of Molecular Sciences, 2021, 22, 1708.	4.1	22
6	Identification and characterisation of maternal perivascular SUSD2+ placental mesenchymal stem/stromal cells. Cell and Tissue Research, 2021, 385, 803-815.	2.9	7
7	Endometrial SUSD2+ Mesenchymal Stem/Stromal Cells in Tissue Engineering: Advances in Novel Cellular Constructs for Pelvic Organ Prolapse. Journal of Personalized Medicine, 2021, 11, 840.	2.5	9
8	Chemokine SDF1 Mediated Bone Regeneration Using Biodegradable Poly(D,L-lactide- <i>co</i> glycolide) 3D Scaffolds and Bone Marrow-Derived Mesenchymal Stem Cells: Implication for the Development of an "Off-the-Shelf―Pharmacologically Active Construct. Biomacromolecules, 2020, 21, 4888-4903.	5.4	6
9	A novel tropoelastin-based resorbable surgical mesh for pelvic organ prolapse repair. Materials Today Bio, 2020, 8, 100081.	5.5	17
10	Emerging Nano/Micro-Structured Degradable Polymeric Meshes for Pelvic Floor Reconstruction. Nanomaterials, 2020, 10, 1120.	4.1	18
11	Electrospun Nanofiber Meshes With Endometrial MSCs Modulate Foreign Body Response by Increased Angiogenesis, Matrix Synthesis, and Anti-Inflammatory Gene Expression in Mice: Implication in Pelvic Floor. Frontiers in Pharmacology, 2020, 11, 353.	3.5	29
12	Design of Novel Perovskite-Based Polymeric Poly(l-Lactide-Co-Glycolide) Nanofibers with Anti-Microbial Properties for Tissue Engineering. Nanomaterials, 2020, 10, 1127.	4.1	19
13	A fiberâ€optic sensorâ€based device for the measurement of vaginal integrity in women. Neurourology and Urodynamics, 2019, 38, 2264-2272.	1.5	4
14	3D bioprinted endometrial stem cells on melt electrospun poly $\hat{l}\mu$ -caprolactone mesh for pelvic floor application promote anti-inflammatory responses in mice. Acta Biomaterialia, 2019, 97, 162-176.	8.3	79
15	Mesenchymal stem cell-based bioengineered constructs: foreign body response, cross-talk with macrophages and impact of biomaterial design strategies for pelvic floor disorders. Interface Focus, 2019, 9, 20180089.	3.0	54
16	Coatings Releasing the Relaxin Peptide Analogue B7-33 Reduce Fibrotic Encapsulation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 45511-45519.	8.0	9
17	Composite mesh design for delivery of autologous mesenchymal stem cells influences mesh integration, exposure and biocompatibility in an ovine model of pelvic organ prolapse. Biomaterials, 2019, 225, 119495.	11.4	38
18	Tissue engineering approaches for treating pelvic organ prolapse using a novel source of stem/stromal cells and new materials. Current Opinion in Urology, 2019, 29, 450-457.	1.8	31

#	Article	IF	Citations
19	Blended Nanostructured Degradable Mesh with Endometrial Mesenchymal Stem Cells Promotes Tissue Integration and Anti-Inflammatory Response <i>in Vivo</i> for Pelvic Floor Application. Biomacromolecules, 2019, 20, 454-468.	5.4	45
20	Recent studies on electrospinning preparation of patterned, core–shell, and aligned scaffolds. Journal of Applied Polymer Science, 2018, 135, 46570.	2.6	22
21	Optimally Hierarchical Nanostructured Hydroxyapatite Coatings for Superior Prosthesis Biointegration. ACS Applied Materials & Samp; Interfaces, 2018, 10, 24840-24849.	8.0	20
22	Electrospun Polyacrylonitrile \hat{I}^2 -Cyclodextrin Composite Membranes for Simultaneous Air Filtration and Adsorption of Volatile Organic Compounds. ACS Applied Nano Materials, 2018, 1, 4268-4277.	5.0	53
23	Ultra-Porous Nanoparticle Networks: A Biomimetic Coating Morphology for Enhanced Cellular Response and Infiltration. Scientific Reports, 2016, 6, 24305.	3.3	23
24	Tubular Tissues and Organs of Human Bodyâ€"Challenges in Regenerative Medicine. Journal of Nanoscience and Nanotechnology, 2016, 16, 19-39.	0.9	28
25	In vitro evaluation of biodegradable magnesium alloys containing micro-alloying additions of strontium, with and without zinc. Journal of Materials Chemistry B, 2015, 3, 8874-8883.	5.8	29
26	Elastomeric Core/Shell Nanofibrous Cardiac Patch as a Biomimetic Support for Infarcted Porcine Myocardium. Tissue Engineering - Part A, 2015, 21, 1288-1298.	3.1	40
27	Gold Nanoparticle Loaded Hybrid Nanofibers for Cardiogenic Differentiation of Stem Cells for Infarcted Myocardium Regeneration. Macromolecular Bioscience, 2014, 14, 515-525.	4.1	102
28	Mimicking Native Extracellular Matrix with Phytic Acidâ€Crosslinked Protein Nanofibers for Cardiac Tissue Engineering. Macromolecular Bioscience, 2013, 13, 366-375.	4.1	59
29	Click chemistry approach for fabricating PVA/gelatin nanofibers for the differentiation of ADSCs to keratinocytes. Journal of Materials Science: Materials in Medicine, 2013, 24, 2863-2871.	3.6	25
30	Expression of cardiac proteins in neonatal cardiomyocytes on PGS/fibrinogen core/shell substrate for Cardiac tissue engineering. International Journal of Cardiology, 2013, 167, 1461-1468.	1.7	81
31	Nanofibrous structured biomimetic strategies for skin tissue regeneration. Wound Repair and Regeneration, 2013, 21, 1-16.	3.0	149
32	Buckled structures and 5-azacytidine enhance cardiogenic differentiation of adipose-derived stem cells. Nanomedicine, 2013, 8, 1985-1997.	3.3	18
33	Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol) Tj ETQq1 1 0.784314 rgBT /	Oyerlock	10 ₆₁ f 50 182
34	Practical Considerations for Medical Applications using Biological Grafts and their Derivatives. Materials Research Society Symposia Proceedings, 2012, 1418, 215.	0.1	1
35	Minimally invasive injectable short nanofibers of poly(glycerol sebacate) for cardiac tissue engineering. Nanotechnology, 2012, 23, 385102.	2.6	92
36	Composite poly-l-lactic acid/poly- $(\hat{l}\pm,\hat{l}^2)$ -dl-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration. Materials Science and Engineering C, 2012, 32, 1443-1451.	7.3	36

#	Article	IF	CITATIONS
37	Biomaterial strategies for alleviation of myocardial infarction. Journal of the Royal Society Interface, 2012, 9, 1-19.	3.4	186
38	Minimally invasive cell-seeded biomaterial systems for injectable/epicardial implantation in ischemic heart disease. International Journal of Nanomedicine, 2012, 7, 5969.	6.7	33
39	Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage. Biomaterials, 2012, 33, 846-855.	11.4	220
40	Advances in Polymeric Systems for Tissue Engineering and Biomedical Applications. Macromolecular Bioscience, 2012, 12, 286-311.	4.1	157
41	Poly(Glycerol Sebacate)/Gelatin Core/Shell Fibrous Structure for Regeneration of Myocardial Infarction. Tissue Engineering - Part A, 2011, 17, 1363-1373.	3.1	121
42	Elastomeric electrospun scaffolds of poly(l-lactide-co-trimethylene carbonate) for myocardial tissue engineering. Journal of Materials Science: Materials in Medicine, 2011, 22, 1689-1699.	3.6	41
43	Evaluation of the Biocompatibility of PLACL/Collagen Nanostructured Matrices with Cardiomyocytes as a Model for the Regeneration of Infarcted Myocardium. Advanced Functional Materials, 2011, 21, 2291-2300.	14.9	64
44	Applications of conducting polymers and their issues in biomedical engineering. Journal of the Royal Society Interface, 2010, 7, S559-79.	3.4	329
45	Multimodal biomaterial strategies for regeneration of infarcted myocardium. Journal of Materials Chemistry, 2010, 20, 8819.	6.7	23
46	Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy, 2009, 11, 377-391.	0.7	330