
Yuri V Tyutyunov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2391887/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Dimensions and Units of the Population Interaction Coefficients. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	2
2	Ratio-Dependence in Predator-Prey Systems as an Edge and Basic Minimal Model of Predator Interference. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	8
3	Spatiotemporal Pattern Formation in a Prey-Predator System: The Case Study of Short-Term Interactions Between Diatom Microalgae and Microcrustaceans. Mathematics, 2020, 8, 1065.	2.2	16
4	From Lotka–Volterra to Arditi–Ginzburg: 90 Years of Evolving Trophic Functions. Biology Bulletin Reviews, 2020, 10, 167-185.	0.9	21
5	Long-Range Prediction of the Risk of Extinction Faced by the Pikeperch in the Azov Sea: Was the Prediction Correct?. Biophysics (Russian Federation), 2020, 65, 338-348.	0.7	2
6	Predator overcomes the Allee effect due to indirect prey–taxis. Ecological Complexity, 2019, 39, 100772.	2.9	21
7	Numerical Study of Bifurcations Occurring at Fast Timescale in a Predator–Prey Model with Inertial Prey-Taxis. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health, 2019, , 221-239.	0.0	1
8	Prey-taxis destabilizes homogeneous stationary state in spatial Gause–Kolmogorov-type model for predator–prey system. Ecological Complexity, 2017, 31, 170-180.	2.9	46
9	Simple models for studying complex spatiotemporal patterns of animal behavior. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 140, 193-202.	1.4	15
10	On assessment of the large-scale effect of introduction of the ragweed leaf beetle Zygogramma suturalis F. (Coleoptera, Chrysomelidae) on the phytocenoses of South Russia. Entomological Review, 2015, 95, 1-14.	0.3	5
11	The role of solitary population waves in efficient suppression of adventive weeds by introduced phytophagous insects. Entomological Review, 2014, 94, 310-319.	0.3	4
12	A mechanistic model for interference and Allee effect in the predator population. Biophysics (Russian) Tj ETQqO	0 0 ₀ gBT /0	Dverlock 107
13	On the efficiency of introduction of American insects feeding on the common ragweed (Ambrosia) Tj ETQq1 1 0.	.784314 rg 0.3	gBŢ /Overloc
14	Spatial Demogenetic Model for Studying Phenomena Observed upon Introduction of the Ragweed Leaf Beetle in the South of Russia. Mathematical Modelling of Natural Phenomena, 2013, 8, 80-95.	2.4	14
15	Spatially mixed crops to control the stratified dispersal of airborne fungal diseases. Ecological Modelling, 2010, 221, 2793-2800.	2.5	65
16	Modeling of the population density flow for periodically migrating organisms. Oceanology, 2010, 50, 67-76.	1.2	9
17	Microscale patchiness of the distribution of copepods (Harpacticoida) as a result of trophotaxis. Biophysics (Russian Federation), 2009, 54, 355-360.	0.7	14
18	Landscape refuges delay resistance of the European corn borer to Bt-maize: A demo-genetic dynamic model. Theoretical Population Biology, 2008, 74, 138-146.	1.1	47

Υυρι ν Τγυτγυνον

#	Article	IF	CITATIONS
19	Insecticidal Bt Crops Under Massive Bt-resistant Pest Invasion: Mathematical Simulation. , 2008, , 81-94.		0
20	Predator interference emerging from trophotaxis in predator–prey systems: An individual-based approach. Ecological Complexity, 2008, 5, 48-58.	2.9	29
21	A Minimal Model of Pursuit-Evasion in a Predator-Prey System. Mathematical Modelling of Natural Phenomena, 2007, 2, 122-134.	2.4	36
22	A spatial model of the development of pest resistance to a transgenic insecticidal crop: European corn borer on Bt maize. Biophysics (Russian Federation), 2007, 52, 52-67.	0.7	10
23	Does mutual interference always stabilize predator–prey dynamics? A comparison of models. Comptes Rendus - Biologies, 2004, 327, 1037-1057.	0.2	64
24	Clustering due to Acceleration in the Response to Population Gradient: A Simple Selfâ€Organization Model. American Naturalist, 2004, 164, 722-735.	2.1	33
25	The Role of Prey Taxis in Biological Control: A Spatial Theoretical Model. American Naturalist, 2003, 162, 61-76.	2.1	85
26	Risk assessment of the harvested pike-perch population of the Azov Sea. Ecological Modelling, 2002, 149, 297-311.	2.5	11
27	Directed Movement of Predators and the Emergence of Density-Dependence in Predator–Prey Models. Theoretical Population Biology, 2001, 59, 207-221.	1.1	84
28	Extinction risk assessment and optimal harvesting of anchovy and sprat in the Azov Sea. Journal of Applied Ecology, 1999, 36, 297-306.	4.0	10
29	THE INFLUENCE OF DISPERSAL BEHAVIOUR ON METAPOPULATION VIABILITY. Journal of Biological Systems, 1996, 04, 277-290.	1.4	3
30	Modelling fluctuations and optimal harvesting in perch populations. Ecological Modelling, 1993, 69, 19-42.	2.5	16
31	Simulation model of basic components of the Okhotsk Sea ecosystem. Soviet Journal of Physical Oceanography, 1990, 1, 309-315.	0.1	1