
Dae-Young Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2391837/publications.pdf Version: 2024-02-01

DAF-YOUNG LEF

#	Article	IF	CITATIONS
1	Near-orthogonal Orientation of Small-scale Magnetic Flux Ropes Relative to the Background Interplanetary Magnetic Field. Astrophysical Journal, 2022, 931, 98.	4.5	1
2	Polar Middle Atmospheric Responses to Medium Energy Electron (MEE) Precipitation Using Numerical Model Simulations. Atmosphere, 2021, 12, 133.	2.3	1
3	Sensitive Dependence of Ultrarelativistic Electron Precipitation on EMIC Wave Frequency. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028270.	2.4	2
4	Observations of Particle Loss due to Injectionâ€Associated Electromagnetic Ion Cyclotron Waves. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028503.	2.4	11
5	Anomalous Proton Velocity Diffusion by Quasi-monochromatic Kinetic Alfvén Waves. Astrophysical Journal, 2021, 910, 140.	4.5	Ο
6	Upper Limit of Proton Anisotropy and Its Relation to Electromagnetic Ion Cyclotron Waves in the Inner Magnetosphere. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028614.	2.4	5
7	Rapid Injections of MeV Electrons and Extremely Fast Stepâ€Like Outer Radiation Belt Enhancements. Geophysical Research Letters, 2021, 48, e2021GL093151.	4.0	10
8	Multiâ€Year Statistics of LEO Energetic Electrons as Observed by the Korean NextSatâ€1. Space Weather, 2021, 19, e2021SW002787.	3.7	2
9	Characteristics of Suprathermal Electrons in Small-Scale Magnetic Flux Ropes and Their Implications on the Magnetic Connection to the Sun. Solar Physics, 2021, 296, 1.	2.5	5
10	Nonlinear Scattering of 90° Pitch Angle Electrons in the Outer Radiation Belt by Largeâ€Amplitude EMIC Waves. Geophysical Research Letters, 2020, 47, e2019GL086738.	4.0	10
11	Simultaneous Influence of Whistler-Mode Chorus and EMIC Waves on Electron Loss in the Earth's Radiation Belt. Journal of the Korean Physical Society, 2020, 77, 707-713.	0.7	2
12	Proton Perpendicular Heating by Kinetic Alfvén Waves. Astrophysical Journal, 2019, 878, 141.	4.5	4
13	Origin of Solar Rotational Periodicity and Harmonics Identified in the Interplanetary Magnetic Field B z \$B_{z}\$ Component Near the Earth During Solar Cycles 23 and 24. Solar Physics, 2019, 294, 1.	2.5	8
14	Electrostatic odd symmetric eigenmode in inhomogeneous Bernstein-Greene-Kruskal equilibrium. Physics of Plasmas, 2018, 25, 042104.	1.9	1
15	Responses of Nitrogen Oxide to High‧peed Solar Wind Stream in the Polar Middle Atmosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 9788-9801.	2.4	3
16	Test of Ion Cyclotron Resonance Instability Using Proton Distributions Obtained From Van Allen Probeâ€A Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 6591-6610.	2.4	18
17	Effects of Oblique Wave Normal Angle and Noncircular Polarization of Electromagnetic Ion Cyclotron Waves on the Pitch Angle Scattering of Relativistic Electrons. Journal of Geophysical Research: Space Physics, 2018, 123, 4556-4573.	2.4	13
18	Global Threeâ€Dimensional Simulation of the Earth's Magnetospheric and Ionospheric Responses to Smallâ€Scale Magnetic Flux Ropes in the Solar Wind. Journal of Geophysical Research: Space Physics, 2018, 123, 6307-6325.	2.4	2

DAE-YOUNG LEE

#	Article	IF	CITATIONS
19	Effect of hot anisotropic He ⁺ ions on the growth and damping of electromagnetic ion cyclotron waves in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 4935-4942.	2.4	19
20	Statistical properties and geoeffectiveness of southward interplanetary magnetic field with emphasis on weakly southward <i>B</i> _{<i>z</i>} events. Journal of Geophysical Research: Space Physics, 2017, 122, 4921-4934.	2.4	4
21	Electron Bernstein-Greene-Kruskal hole for obliquely propagating solitary kinetic Alfvén waves. Physics of Plasmas, 2017, 24, .	1.9	3
22	Spatial dependence of electromagnetic ion cyclotron waves triggered by solar wind dynamic pressure enhancements. Journal of Geophysical Research: Space Physics, 2017, 122, 5502-5518.	2.4	16
23	Van Allen Probes observations of electromagnetic ion cyclotron waves triggered by enhanced solar wind dynamic pressure. Journal of Geophysical Research: Space Physics, 2016, 121, 9771-9793.	2.4	20
24	Artificial neural network prediction model for geosynchronous electron fluxes: Dependence on satellite position and particle energy. Space Weather, 2016, 14, 313-321.	3.7	29
25	MHD simulations using average solar wind conditions for substorms observed under northward IMF conditions. Journal of Geophysical Research: Space Physics, 2015, 120, 7672-7686.	2.4	6
26	Comprehensive analysis of the flux dropout during 7–8 November 2008 storm using multisatellite observations and RBE model. Journal of Geophysical Research: Space Physics, 2015, 120, 4298-4312.	2.4	5
27	A prediction model for the global distribution of whistler chorus wave amplitude developed separately for two latitudinal zones. Journal of Geophysical Research: Space Physics, 2015, 120, 2819-2837.	2.4	9
28	New model fit functions of the plasmapause location determined using THEMIS observations during the ascending phase of Solar Cycle 24. Journal of Geophysical Research: Space Physics, 2015, 120, 2877-2889.	2.4	25
29	Dependence of plasmaspheric hiss on solar wind parameters and geomagnetic activity and modeling of its global distribution. Journal of Geophysical Research: Space Physics, 2015, 120, 1153-1167.	2.4	28
30	Magnetopause structure favorable for radiation belt electron loss. Journal of Geophysical Research: Space Physics, 2014, 119, 5495-5508.	2.4	21
31	Prediction Model of the Outer Radiation Belt Developed by Chungbuk National University. Journal of Astronomy and Space Sciences, 2014, 31, 303-309.	1.0	2
32	Significant loss of energetic electrons at the heart of the outer radiation belt during weak magnetic storms. Journal of Geophysical Research: Space Physics, 2013, 118, 4221-4236.	2.4	7
33	Determining radial boundary conditions of outer radiation belt electrons using THEMIS observations. Journal of Geophysical Research: Space Physics, 2013, 118, 2888-2896.	2.4	8
34	Longâ€ŧerm loss and reâ€formation of the outer radiation belt. Journal of Geophysical Research: Space Physics, 2013, 118, 3297-3313.	2.4	18
35	Plasma Flows and Bubble Properties Associated with the Magnetic Dipolarization in Space Close to Geosynchronous Orbit. Journal of Astronomy and Space Sciences, 2013, 30, 95-100.	1.0	0
36	lon-acoustic solitary waves in ion-beam plasma with Boltzmann electrons. Physics of Plasmas, 2012, 19, 032105.	1.9	8

DAE-YOUNG LEE

#	Article	IF	CITATIONS
37	Statistical characteristics of plasma flows associated with magnetic dipolarizations in the nearâ€ŧail region of <i>r</i> < 12 <i>R</i> _{<i>E</i>} . Journal of Geophysical Research, 2012, 117, .	3.3	40
38	On nearâ€ŧail bubble penetration into geosynchronous altitude. Journal of Geophysical Research, 2012, 117, .	3.3	13
39	Observational test of interchange instability associated with magnetic dipolarization in the nearâ€Earth plasma sheet of <i>r</i> < 12 R _E . Journal of Geophysical Research, 2012, 117, .	3.3	6
40	Magnetic field depression at the Earth's surface during energetic neutral atom emission fade-out in the inner magnetosphere. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	1
41	Electron flux changes in the outer radiation belt by radial diffusion during the storm recovery phase in comparison with the fully adiabatic evolution. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	19
42	Can intense substorms occur under northward IMF conditions?. Journal of Geophysical Research, 2010, 115, .	3.3	29
43	Numerical estimates of drift loss and Dst effect for outer radiation belt relativistic electrons with arbitrary pitch angle. Journal of Geophysical Research, 2010, 115, .	3.3	52
44	Some statistical properties of flow bursts in the magnetotail. Journal of Geophysical Research, 2010, 115, .	3.3	17
45	Statistical characteristics and significance of lowâ€frequency instability associated with magnetic dipolarizations in the nearâ€Earth plasma sheet. Journal of Geophysical Research, 2010, 115, .	3.3	18
46	On the poleward boundary of the nightside auroral oval under northward interplanetary magnetic field conditions. Journal of Geophysical Research, 2010, 115, .	3.3	13
47	Response of the Poleward Boundary of the Nightside Auroral Oval to Impacts of Solar Wind Dynamic Pressure Enhancement. Journal of Astronomy and Space Sciences, 2010, 27, 189-194.	1.0	2
48	Effects of charged dust particles on nonlinear ion acoustic solitary waves in a relativistic plasma. Physics of Plasmas, 2009, 16, .	1.9	13
49	Response to "Comment on †Effects of charged dust particles on nonlinear ion acoustic solitary waves in a relativistic plasma' ―[Phys. Plasmas 16, 064701 (2009)]. Physics of Plasmas, 2009, 16, 064702.	1.9	1
50	Evidence that solar wind fluctuations substantially affect the strength of dayside ionospheric convection. Journal of Geophysical Research, 2009, 114, .	3.3	24
51	Evidence that solar wind fluctuations substantially affect global convection and substorm occurrence. Journal of Geophysical Research, 2009, 114, .	3.3	27
52	Are repetitive particle injections during highâ€speed solar wind streams classic substorms?. Journal of Geophysical Research, 2008, 113, .	3.3	10
53	Numerical calculations of relativistic electron drift loss effect. Journal of Geophysical Research, 2008, 113, .	3.3	84
54	Dynamic pressure enhancements as a cause of largeâ€scale stormtime substorms. Journal of Geophysical Research, 2008, 113, .	3.3	14

DAE-YOUNG LEE

#	Article	IF	CITATIONS
55	Reasons why some solar wind changes do not trigger substorms. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	14
56	Statistical significance of association between whistlerâ€mode chorus enhancements and enhanced convection periods during highâ€speed streams. Journal of Geophysical Research, 2007, 112, .	3.3	26
57	Energetic neutral atom response to solar wind dynamic pressure enhancements. Journal of Geophysical Research, 2007, 112, .	3.3	17
58	Solitary Alfvén waves in a dusty plasma. Physics of Plasmas, 2007, 14, 052304.	1.9	12
59	Origin of geosynchronous relativistic electron events. Journal of Geophysical Research, 2006, 111, .	3.3	32
60	Repetitive substorms caused by Alfvénic waves of the interplanetary magnetic field during high-speed solar wind streams. Journal of Geophysical Research, 2006, 111, .	3.3	29
61	Global auroral responses to abrupt solar wind changes: Dynamic pressure, substorm, and null events. Journal of Geophysical Research, 2005, 110, .	3.3	68
62	Ion acoustic solitary waves in a dusty plasma obliquely propagating to an external magnetic field. Physics of Plasmas, 2005, 12, 022304.	1.9	36
63	Ion thermal pressure effects on dust ion acoustic solitary waves in a dusty plasma obliquely propagating to an external magnetic field. Physics of Plasmas, 2005, 12, 072301.	1.9	38
64	Comparison of geosynchronous energetic particle flux responses to solar wind dynamic pressure enhancements and substorms. Journal of Geophysical Research, 2005, 110, .	3.3	59
65	A new perspective on the role of the solar wind dynamic pressure in the ring current particle loss through the magnetopause. Journal of Geophysical Research, 2005, 110, .	3.3	12
66	Solar wind-magnetosphere coupling leading to relativistic electron energization during high-speed streams. Journal of Geophysical Research, 2005, 110, .	3.3	84
67	How are storm time injections different from nonstorm time injections?. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66, 1715-1725.	1.6	5
68	Geosynchronous magnetic field response to solar wind dynamic pressure pulse. Journal of Geophysical Research, 2004, 109, .	3.3	62
69	Sawtooth oscillations directly driven by solar wind dynamic pressure enhancements. Journal of Geophysical Research, 2004, 109, .	3.3	56
70	Modeling of remote sensing of thin current sheet. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	13
71	Statistical features of substorm indicators during geomagnetic storms. Journal of Geophysical Research, 2002, 107, SMP 16-1.	3.3	7
72	Substorms associated with azimuthal turnings of the interplanetary magnetic field. Journal of Atmospheric and Solar-Terrestrial Physics, 2001, 63, 1763-1774.	1.6	9

#	Article	IF	CITATIONS
73	Effect of plasma compression on plasma sheet stability. Geophysical Research Letters, 1999, 26, 2705-2708.	4.0	13
74	Ballooning instability in the tail plasma sheet. Geophysical Research Letters, 1998, 25, 4095-4098.	4.0	29